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Motivation: wave-induced shelf vibration measurements

Chen et al, Geophy Res Lett, 2019

Massom et al, Nature, 2018
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Max strain at period 50–100s or 0.02–0.04 Hz ω/π =
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Model with thickening shelf and shoaling seabed
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Governing equations

Single-mode approximation

Water velocity field is real part of

Re{�(x , z) e�i! t} where

(
! 2 R+ angular velocity (prescribed)

� 2 C velocity potential (unknown)

In open ocean

�(x , z) ⇡ '0(x)
cosh k(z + h0)

cosh(k h0)
where k tanh(k h0) = � ⌘ !2

g

In cavity

�(x , z) ⇡ '(x)
cosh (z + h)

cosh(h)
where (1 � � d + �4) tanh(H) = �
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Governing equations

Depth averaged equations

In open ocean, set
'0(x) = Ainc

⇣
ei k x + R e�i k x

⌘

where Ainc is incident amplitude (prescribed), and R 2 C is the reflection
coefficient (unknown).

In shelf/cavity, solve ODE system
�
a'0�0 + b '+ � ⇣ = 0 and (1 � � d) ⇣ + L{⇣}� ' = 0

where coefficients a(x), b(x) known, and Re{⇣(x) ei! t} is the shelf vibration
(unknown).
Plus “jump conditions" at x = 0, i.e. depth averaged continuities.
Plus shelf end conditions.
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Accuracy of single-mode approximation (uniform geometry)
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Maximum shelf displacement: Uniform geometry
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Uncoupled problems
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No flux
φ′￼(0) = 0

No pressure
φ(0) = 0
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Sergienko, J Glaciol, 2013; Meylan et al, J Glaciol, 2017; Papathanasiou et al, Ocean Model, 2019



Maximum shelf displacement: Uniform geometry

0.01 0.02 0.03 0.04
0

1

2

3

!/⇡ [rad/s]

⇣ m
ax
/

A
in

c

no flux
no pressure



Jump conditions

Can be expressed as

c1

✓
'0(0)


◆
+ i c2 '(0)= 2 i k Ainc

and c1

✓
'0(0)


◆
� i c2 '(0)= �2 i k R Ainc

Resonance if non-zero solution for Ainc = 0, i.e.

'0(0)


+ i C '(0) = 0 where C =
c2
c1

Closer to no-flux condition if C ⌧ 1 and no-pressure condition if C � 1.
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Maximum shelf displacement: Uniform geometry
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Complex resonances

Resonance occurs at ! = !m 2 C and ⇣(x) = ⇣m(x) (m = 1, 2, . . .).

Complex frequencies !m lie in lower-half complex plane.

Analytically extend dispersion relations for complex frequencies.

Use homotopy to find complex wavenumbers k and .

Increases computational expense.

Uncoupled eigenfrequencies 2 R ) easy/cheap to calculate.

Complex frequencies 2 C ) difficult/expensive to calculate.
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Homotopy method

Find !m from det(M) = 0, where M is 6 ⇥ 6 matrix

M(!) =

✓
I �R+(!) E(!)

�Rld(!) E(!) I

◆

Uncoupled eigenfrequencies satisfy similar relation, but with R+ 7! Rf or Rp:

Rf = R+ + T� (1 �R�)
�1 T+ and Rp = R+ � T� (1 +R�)

�1 T+

Construct homotopy in which R+ 7! R~:

R~ = R+ + (1 � ~) T� (1 �R�)
�1 T+ or R+ � (1 � ~) T� (1 +R�)

�1 T+

Start with eigenfrequencies and vectors for uncoupled problem (no flux or no
pressure) and solve iteratively, e.g. for ~ = 0, 0.1, 0.2, . . . , 1.
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Reflection coefficient in complex frequency space
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Blaschke product

Note that

|R|2= 1 for ! 2 R i.e. energy conservation

and R(!)= |R(!)|�1 ei arg{R(!)}.

Define

Rbl(!) =
1Y

n=1

r(! : !n) r(! : �!n)

where
r(! : $) =

! �$

! �$
.
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Blaschke product

0.01 0.02 0.03 0.04
-1

0

1

!/⇡

R
e(

R
)

R(!) Rbl(!)

0.01 0.02 0.03 0.04
-1

0

1

!/⇡
Im

(R
)



Incident wave packets and singularity expansion method

Gaussian incident packet

Defined by the Fourier transform (in k )

F{uinc} =
1
⇡

p
2� e�� (k�k0)

2

for prescribed

k0 = chosen central wavenumber and � = chosen packet width.

Singularity expansion method

For long times, the shelf displacement

w(x , t) ⇠ wSEM(x , t) =
1X

n=1

wn(x , t) where wn = Re{An e�i!n t}.
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Example time domain simulation
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Thickening shelf: R(!)



Thickening shelf: R(!)
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Thickening shelf: complex resonant modes
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Example time domain simulation
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Summary

Methods

Efficient method for non-uniform geometries.
Homotopy method to find complex resonances.

Complex reonances

Approximate frequency-domain solutions via Blaschke product.
Capture long-time behaviour of transient solutions.

Thickening shelf

Can prevent mid-range-frequency resonances from being excited.
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Efficiency of step approximation for varying geometry
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Blaschke product: Extended frequency range
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Blaschke product: Shallow-water approximation
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Resonant lifetimes
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Maximum shelf displacement: Thickening shelf
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Shoaling bed: R(!)



Thickening shelf: complex resonant modes ⌘n
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