

Complex resonant ice shelf vibrations

Luke Bennetts, Uni Adelaide

Mike Meylan, Uni Newcastle

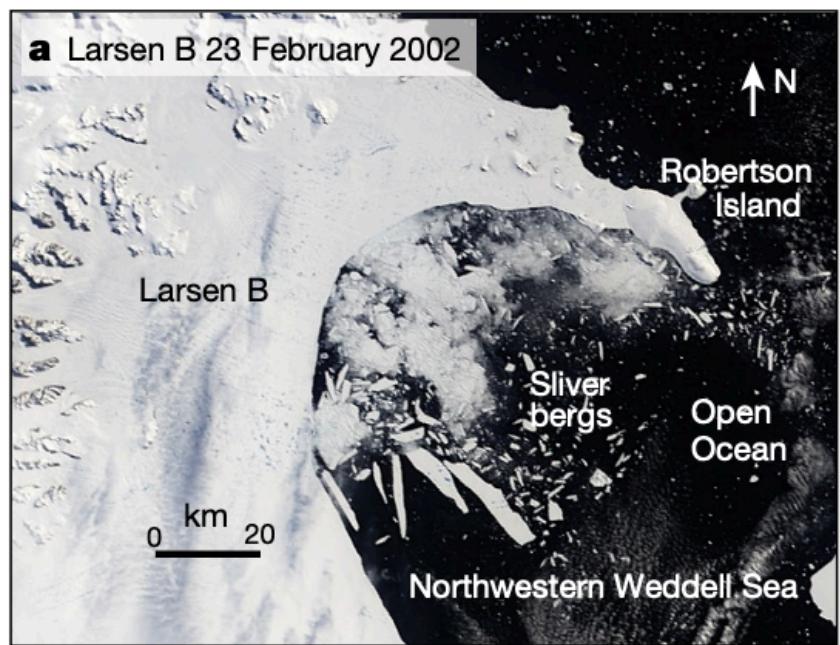
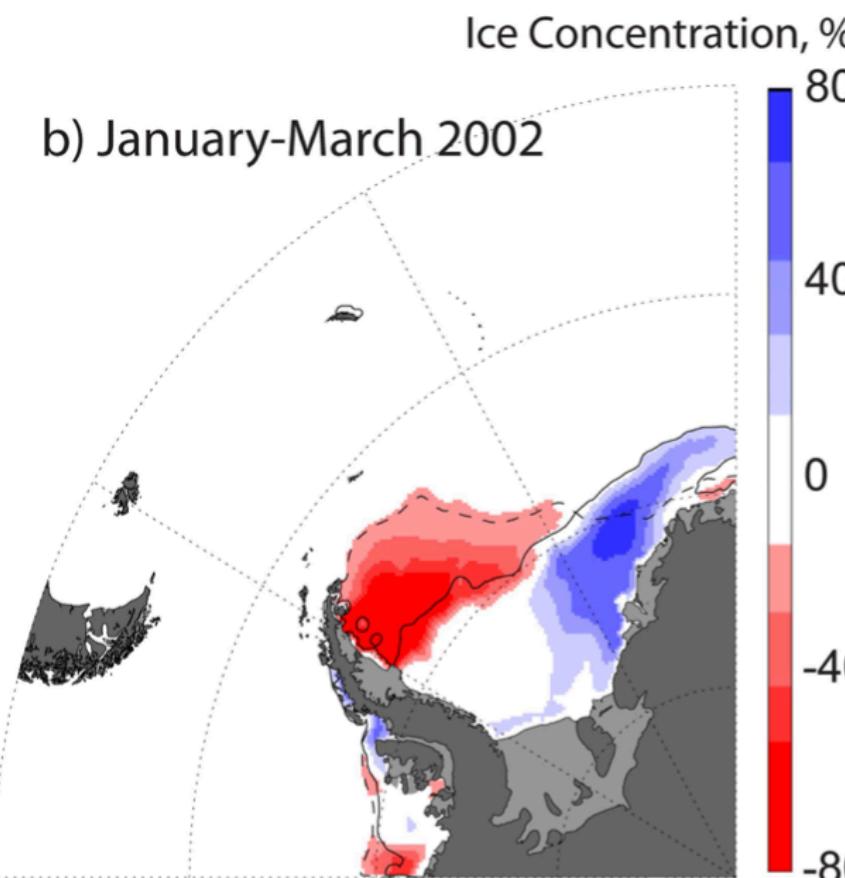
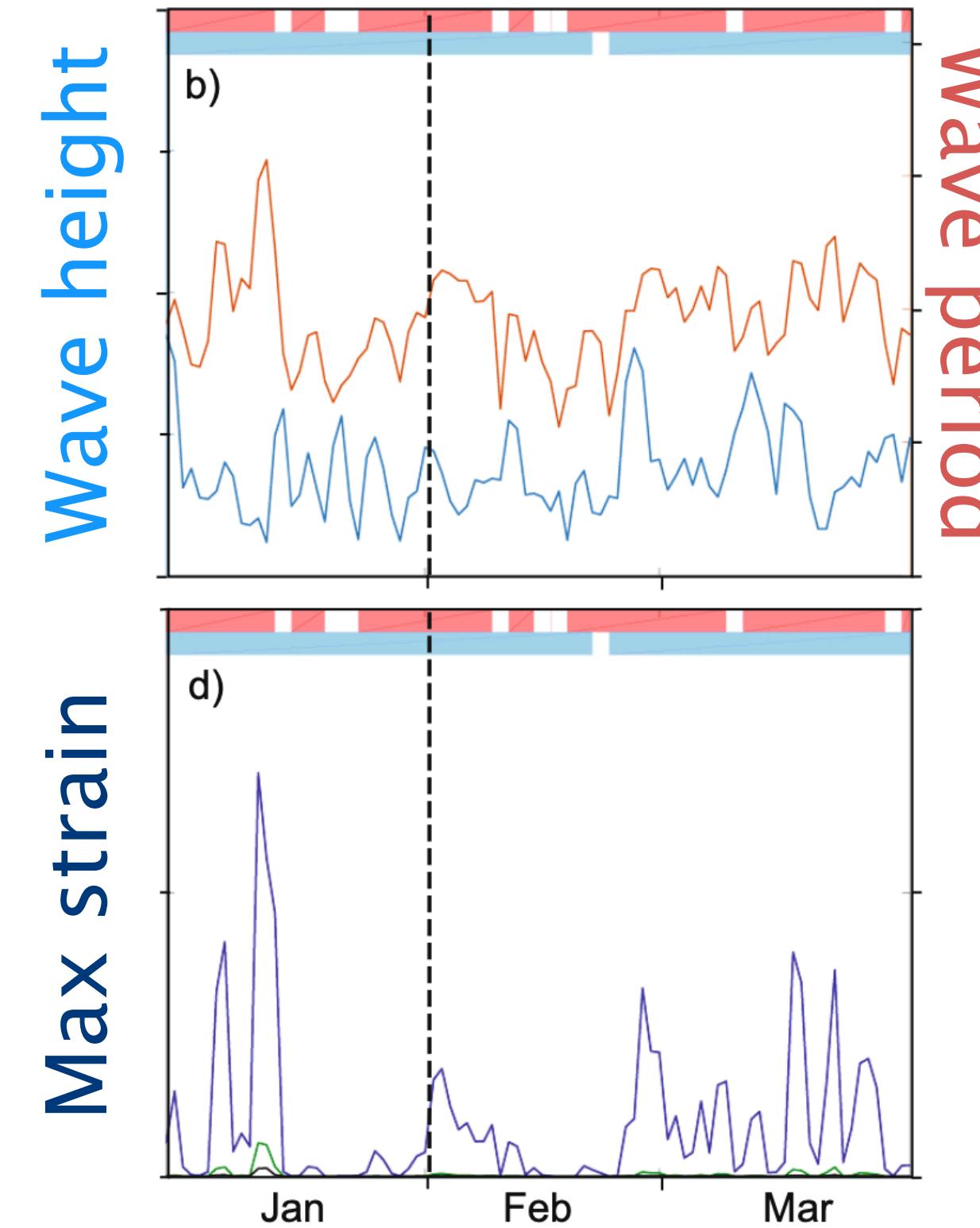
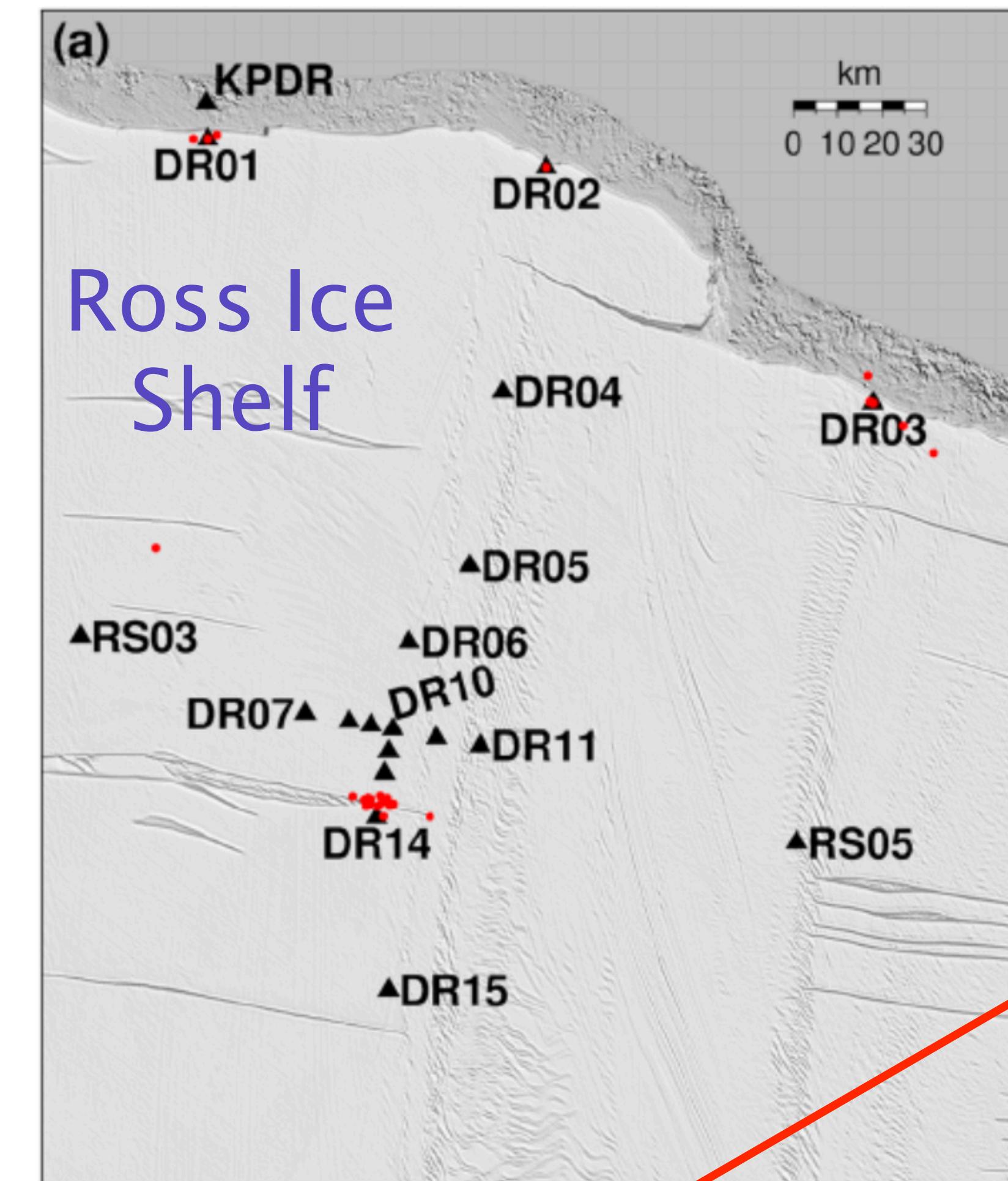
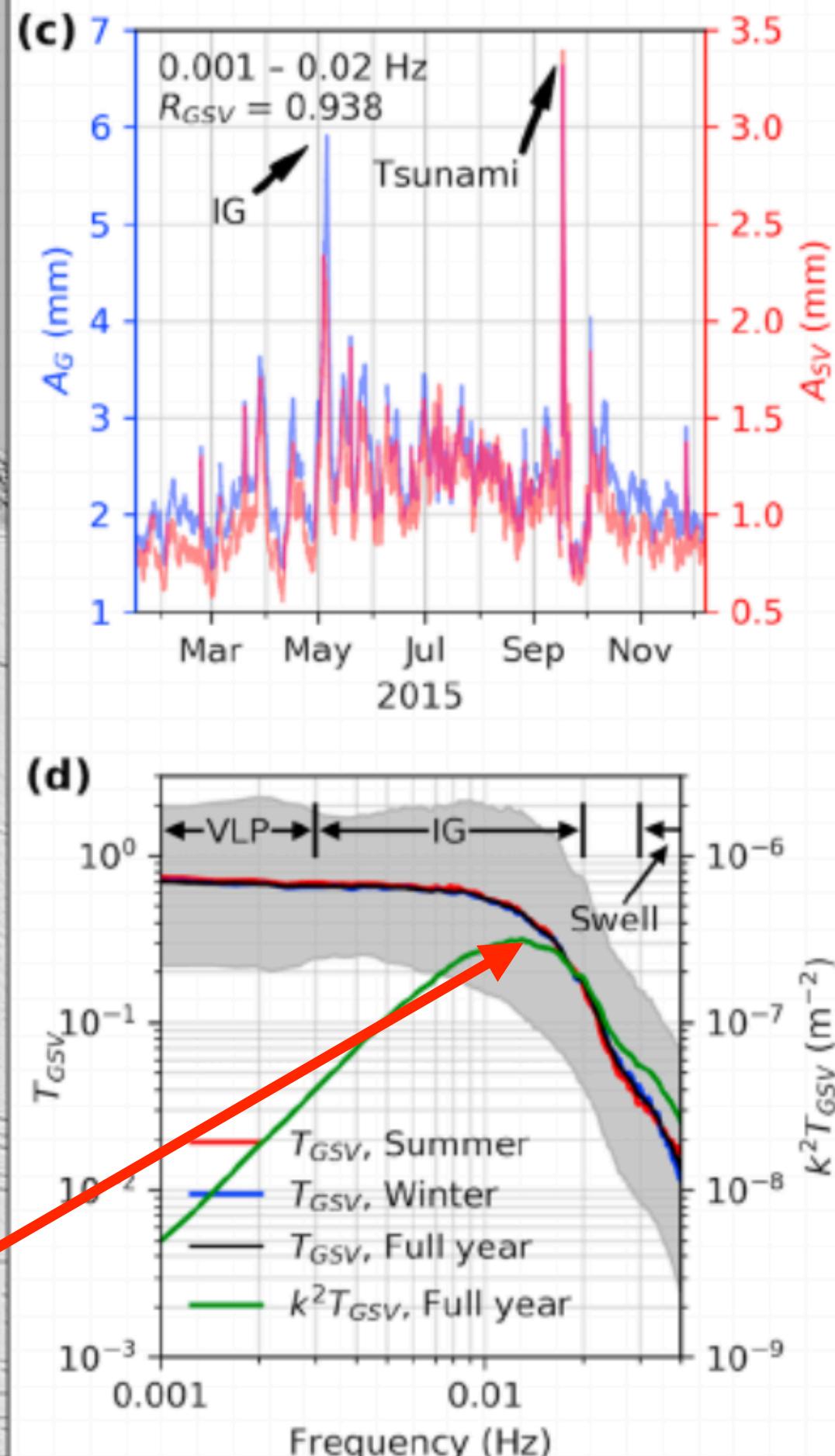
Australian Government
Australian Research Council

THE UNIVERSITY
of ADELAIDE

Australian Government

Department of Sustainability, Environment,
Water, Population and Communities
Australian Antarctic Division

Motivation: wave-induced shelf vibration measurements

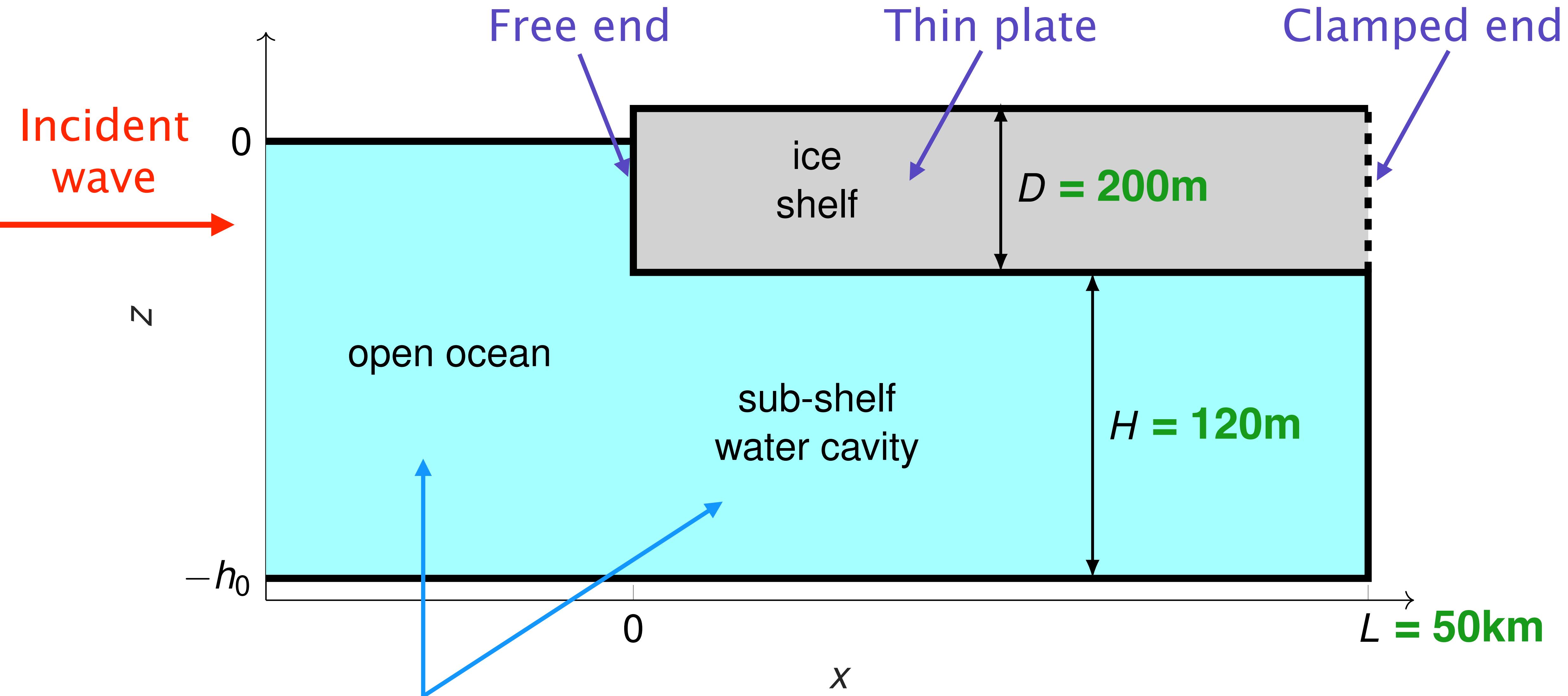


Massom et al, Nature, 2018

Max strain at period 50–100s or $\omega/\pi = 0.02–0.04$ Hz

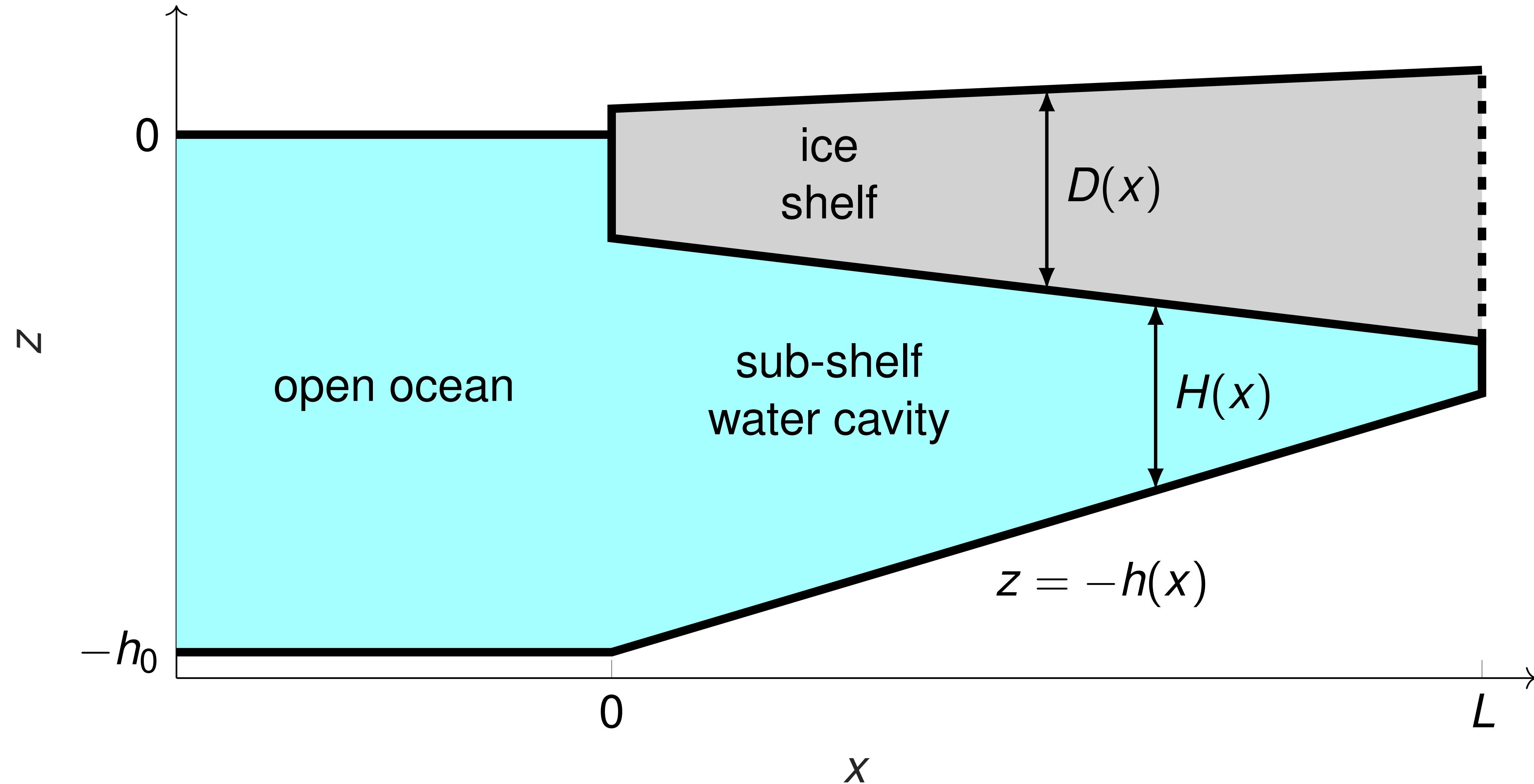
Chen et al, Geophy Res Lett, 2019

Standard model



Potential flow: shallow water or finite depth

Model with thickening shelf and shoaling seabed



Governing equations

Single-mode approximation

- Water velocity field is real part of

$$\operatorname{Re}\{\phi(x, z) e^{-i\omega t}\} \quad \text{where} \quad \begin{cases} \omega \in \mathbb{R}^+ & \text{angular velocity (prescribed)} \\ \phi \in \mathbb{C} & \text{velocity potential (unknown)} \end{cases}$$

Governing equations

Single-mode approximation

- Water velocity field is real part of

$$\operatorname{Re}\{\phi(x, z) e^{-i\omega t}\} \quad \text{where} \quad \begin{cases} \omega \in \mathbb{R}^+ & \text{angular velocity (prescribed)} \\ \phi \in \mathbb{C} & \text{velocity potential (unknown)} \end{cases}$$

- In open ocean

$$\phi(x, z) \approx \varphi_0(x) \frac{\cosh k(z + h_0)}{\cosh(k h_0)} \quad \text{where} \quad k \tanh(k h_0) = \sigma \equiv \frac{\omega^2}{g}$$

Governing equations

Single-mode approximation

- Water velocity field is real part of

$$\operatorname{Re}\{\phi(x, z) e^{-i \omega t}\} \quad \text{where} \quad \begin{cases} \omega \in \mathbb{R}^+ & \text{angular velocity (prescribed)} \\ \phi \in \mathbb{C} & \text{velocity potential (unknown)} \end{cases}$$

- In open ocean

$$\phi(x, z) \approx \varphi_0(x) \frac{\cosh k(z + h_0)}{\cosh(k h_0)} \quad \text{where} \quad k \tanh(k h_0) = \sigma \equiv \frac{\omega^2}{g}$$

- In cavity

$$\phi(x, z) \approx \varphi(x) \frac{\cosh \kappa(z + h)}{\cosh(\kappa h)} \quad \text{where} \quad (1 - \sigma d + \Gamma \kappa^4) \kappa \tanh(\kappa H) = \sigma$$

Governing equations

Depth averaged equations

- In open ocean, set

$$\varphi_0(x) = A_{\text{inc}} \left(e^{ikx} + R e^{-ikx} \right)$$

where A_{inc} is incident amplitude (prescribed), and $R \in \mathbb{C}$ is the reflection coefficient (unknown).

Governing equations

Depth averaged equations

- In open ocean, set

$$\varphi_0(x) = A_{\text{inc}} \left(e^{ikx} + R e^{-ikx} \right)$$

where A_{inc} is incident amplitude (prescribed), and $R \in \mathbb{C}$ is the reflection coefficient (unknown).

- In shelf/cavity, solve ODE system

$$(a\varphi')' + b\varphi + \sigma\zeta = 0 \quad \text{and} \quad (1 - \sigma d)\zeta + \mathcal{L}\{\zeta\} - \varphi = 0$$

with known coefficients $a(x)$ and $b(x)$, and where $\text{Re}\{\zeta(x) e^{-i\omega t}\}$ is the shelf vibration (unknown).

Governing equations

Depth averaged equations

- In open ocean, set

$$\varphi_0(x) = A_{\text{inc}} \left(e^{ikx} + R e^{-ikx} \right)$$

where A_{inc} is incident amplitude (prescribed), and $R \in \mathbb{C}$ is the reflection coefficient (unknown).

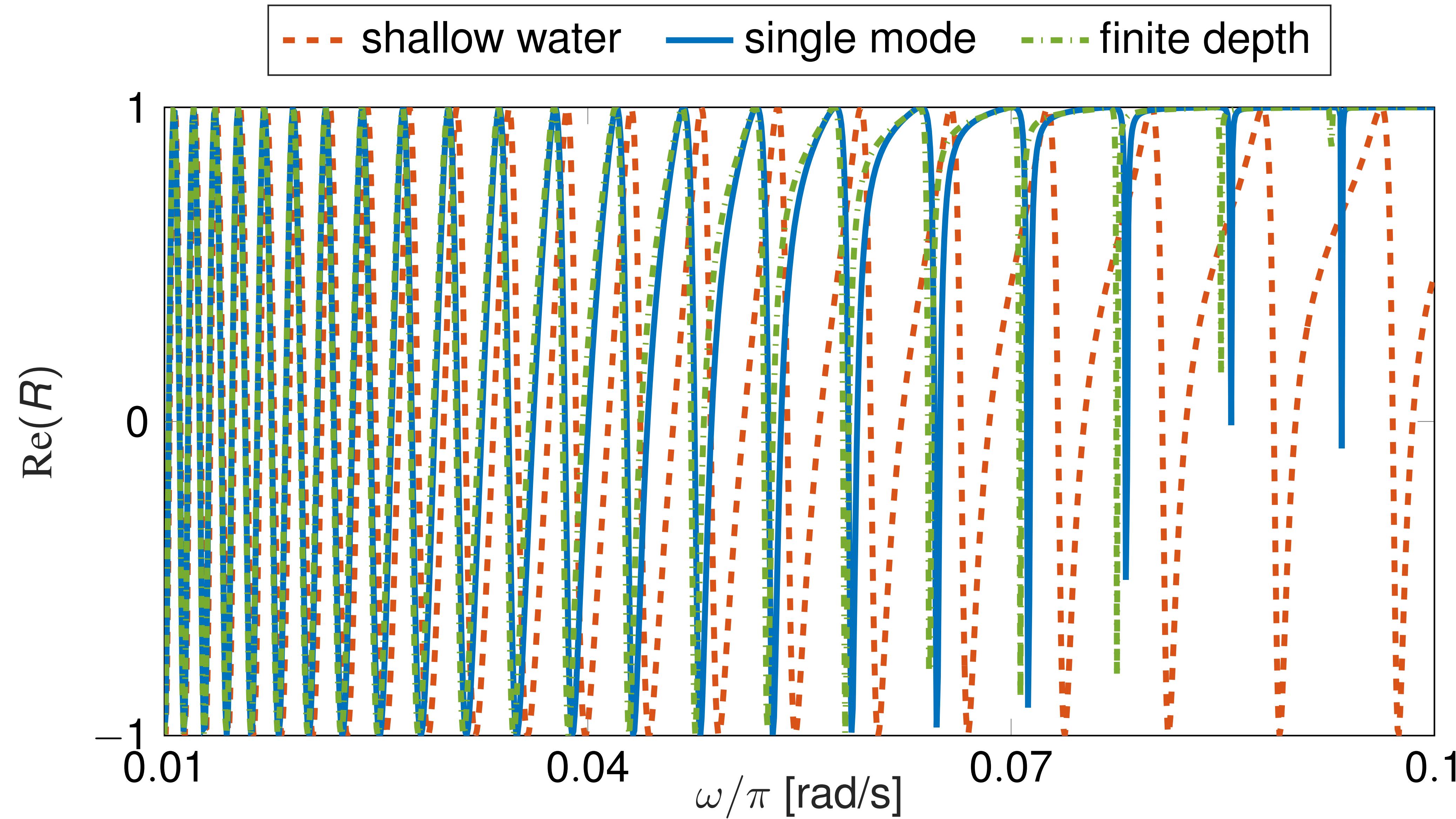
- In shelf/cavity, solve ODE system

$$(a\varphi')' + b\varphi + \sigma\zeta = 0 \quad \text{and} \quad (1 - \sigma d)\zeta + \mathcal{L}\{\zeta\} - \varphi = 0$$

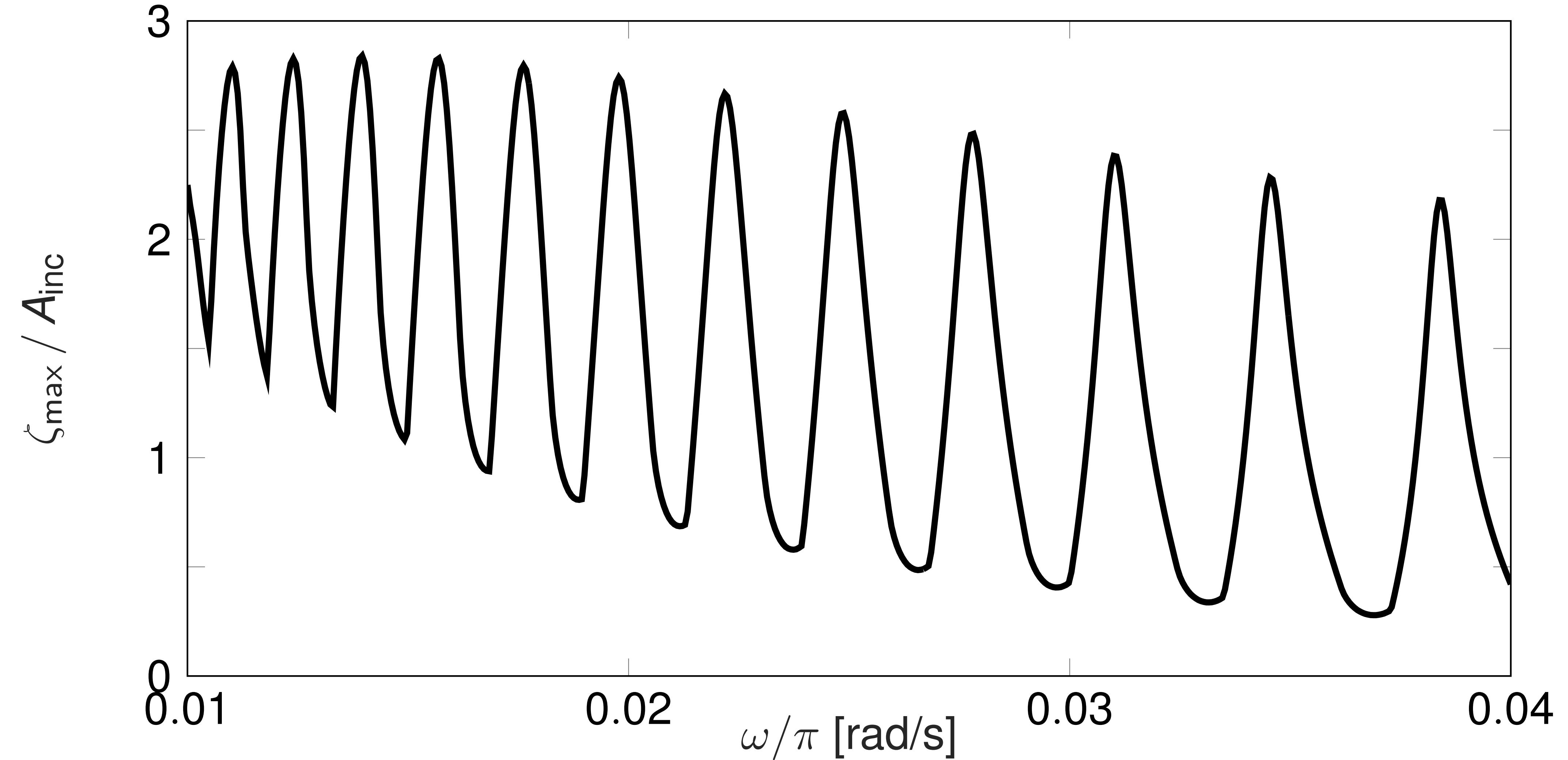
with known coefficients $a(x)$ and $b(x)$, and where $\text{Re}\{\zeta(x) e^{-i\omega t}\}$ is the shelf vibration (unknown).

- + “jump conditions” at $x = 0$, i.e. depth averaged continuities.
- + shelf end conditions, i.e. free at $x = 0$ and clamped at $x = L$.

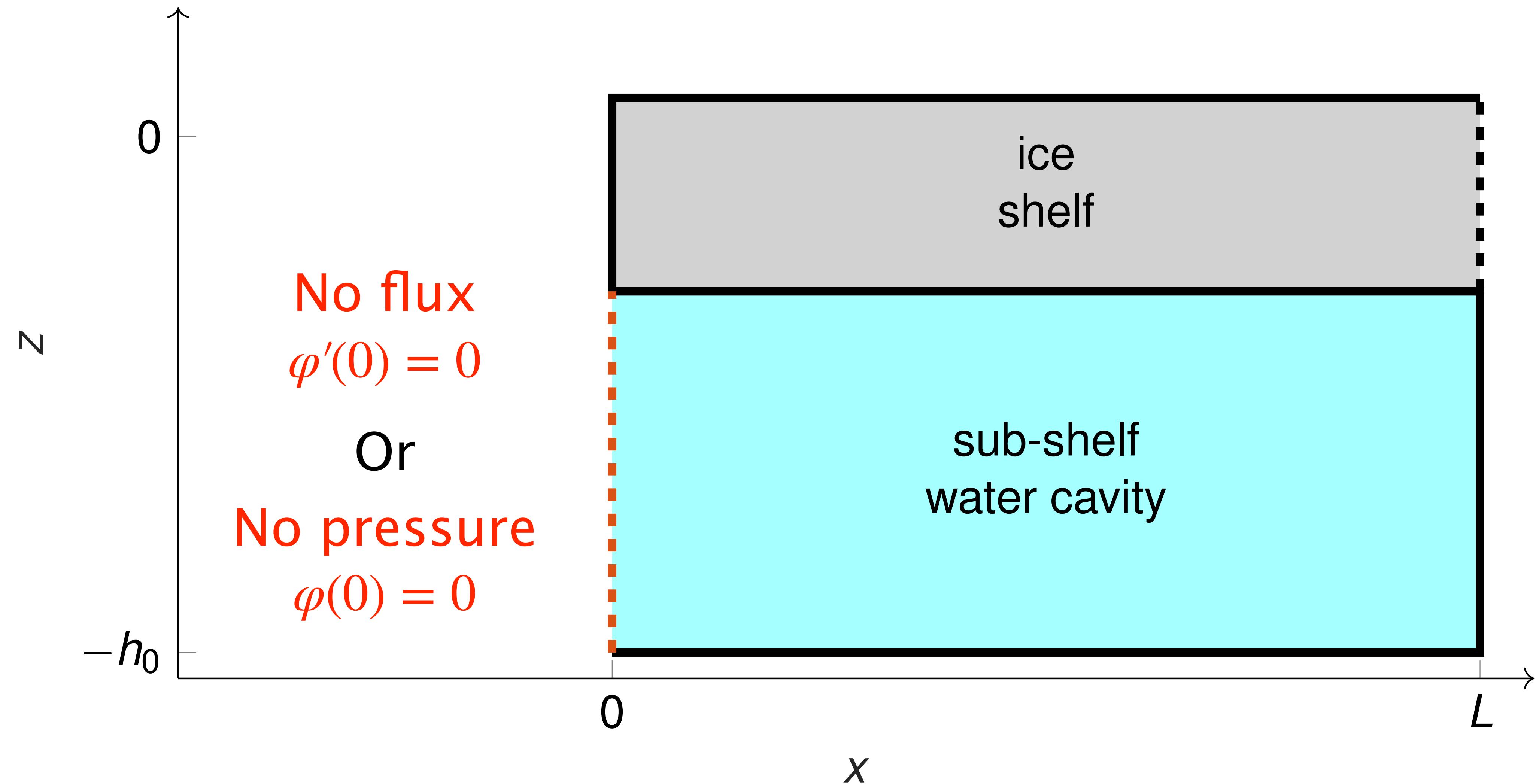
Accuracy of single-mode approximation (uniform geometry)



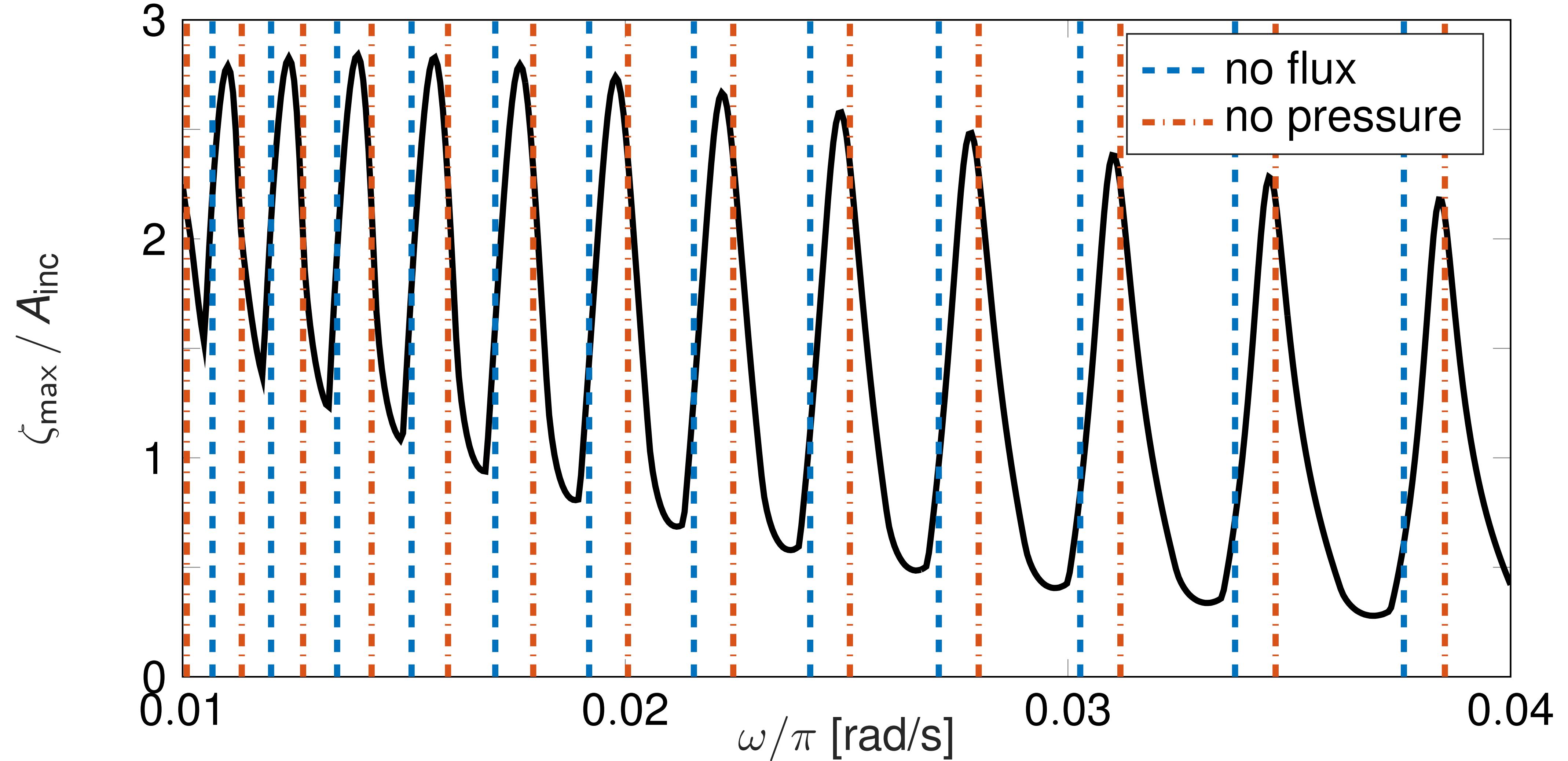
Maximum shelf displacement: Uniform geometry



Uncoupled problems



Maximum shelf displacement: Uniform geometry



Jump conditions

- Can be expressed as

$$c_1 \left(\frac{\varphi'(0)}{\kappa} \right) + i c_2 \varphi(0) = 2 i k A_{\text{inc}}$$

and $c_1 \left(\frac{\varphi'(0)}{\kappa} \right) - i c_2 \varphi(0) = -2 i k R A_{\text{inc}}$

Jump conditions

- Can be expressed as

$$c_1 \left(\frac{\varphi'(0)}{\kappa} \right) + i c_2 \varphi(0) = 2 i k A_{\text{inc}}$$

and $c_1 \left(\frac{\varphi'(0)}{\kappa} \right) - i c_2 \varphi(0) = -2 i k R A_{\text{inc}}$

- Resonance if non-zero solution for $A_{\text{inc}} = 0$, i.e.

$$\frac{\varphi'(0)}{\kappa} + i C \varphi(0) = 0 \quad \text{where} \quad C = \frac{c_2}{c_1}$$

Jump conditions

- Can be expressed as

$$c_1 \left(\frac{\varphi'(0)}{\kappa} \right) + i c_2 \varphi(0) = 2 i k A_{\text{inc}}$$

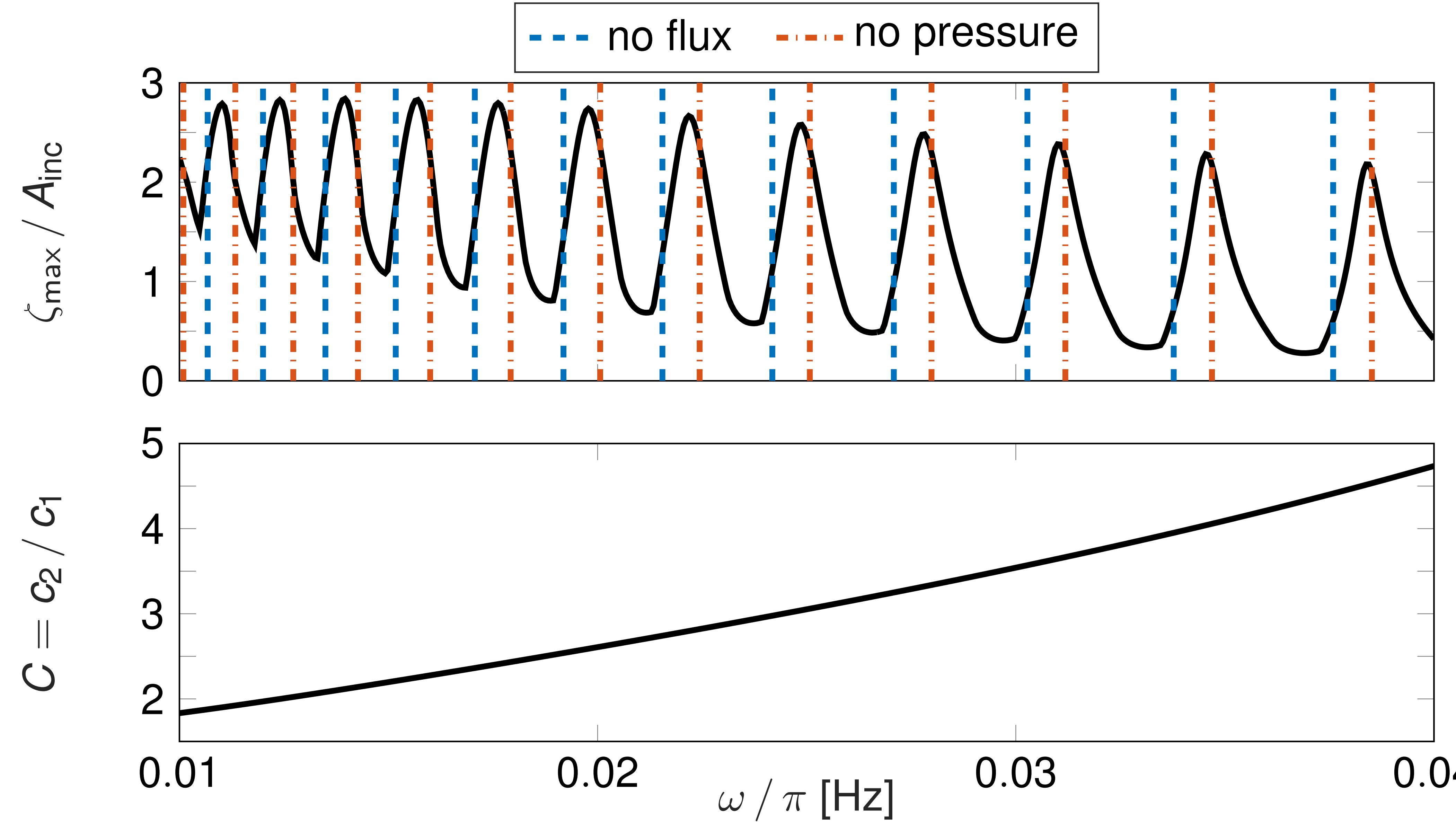
and $c_1 \left(\frac{\varphi'(0)}{\kappa} \right) - i c_2 \varphi(0) = -2 i k R A_{\text{inc}}$

- Resonance if non-zero solution for $A_{\text{inc}} = 0$, i.e.

$$\frac{\varphi'(0)}{\kappa} + i C \varphi(0) = 0 \quad \text{where} \quad C = \frac{c_2}{c_1}$$

- Closer to **no-flux condition** if $C \ll 1$ and **no-pressure condition** if $C \gg 1$.

Maximum shelf displacement: Uniform geometry



Complex resonances

- Resonance occurs at $\omega = \omega_m \in \mathbb{C}$ and $\zeta(x) = \zeta_m(x)$ ($m = 1, 2, \dots$).
- Complex frequencies ω_m lie in lower-half complex plane.

Complex resonances

- Resonance occurs at $\omega = \omega_m \in \mathbb{C}$ and $\zeta(x) = \zeta_m(x)$ ($m = 1, 2, \dots$).
- Complex frequencies ω_m lie in lower-half complex plane.
- Analytically extend dispersion relations for complex frequencies.
- Must find **complex-valued** wavenumbers k and κ .
 - Increases computational expense.

Complex resonances

- Resonance occurs at $\omega = \omega_m \in \mathbb{C}$ and $\zeta(x) = \zeta_m(x)$ ($m = 1, 2, \dots$).
- Complex frequencies ω_m lie in lower-half complex plane.
- Analytically extend dispersion relations for complex frequencies.
- Must find complex-valued wavenumbers k and κ .
 - Increases computational expense.
- Uncoupled eigenfrequencies $\in \mathbb{R} \Rightarrow$ easy/cheap to calculate.
- Complex frequencies $\in \mathbb{C} \Rightarrow$ difficult/expensive to calculate.

Homotopy method

- Find ω_m from $\det(\mathcal{M}) = 0$, where \mathcal{M} is 6×6 matrix

$$\mathcal{M}(\omega) = \begin{pmatrix} \mathcal{I} & -\mathcal{R}_+(\omega) \mathcal{E}(\omega) \\ -\mathcal{R}_{\text{Id}}(\omega) \mathcal{E}(\omega) & \mathcal{I} \end{pmatrix}$$

Homotopy method

- Find ω_m from $\det(\mathcal{M}) = 0$, where \mathcal{M} is 6×6 matrix

$$\mathcal{M}(\omega) = \begin{pmatrix} \mathcal{I} & -\mathcal{R}_+(\omega) \mathcal{E}(\omega) \\ -\mathcal{R}_{\text{Id}}(\omega) \mathcal{E}(\omega) & \mathcal{I} \end{pmatrix}$$

- Uncoupled eigenfrequencies satisfy similar relation, but with $\mathcal{R}_+ \mapsto \mathcal{R}_f$ or \mathcal{R}_p :

$$\mathcal{R}_f = \mathcal{R}_+ + \mathcal{T}_- (1 - \mathcal{R}_-)^{-1} \mathcal{T}_+ \quad \text{and} \quad \mathcal{R}_p = \mathcal{R}_+ - \mathcal{T}_- (1 + \mathcal{R}_-)^{-1} \mathcal{T}_+$$

Homotopy method

- Find ω_m from $\det(\mathcal{M}) = 0$, where \mathcal{M} is 6×6 matrix

$$\mathcal{M}(\omega) = \begin{pmatrix} \mathcal{I} & -\mathcal{R}_+(\omega) \mathcal{E}(\omega) \\ -\mathcal{R}_{\text{Id}}(\omega) \mathcal{E}(\omega) & \mathcal{I} \end{pmatrix}$$

- Uncoupled eigenfrequencies satisfy similar relation, but with $\mathcal{R}_+ \mapsto \mathcal{R}_f$ or \mathcal{R}_p :

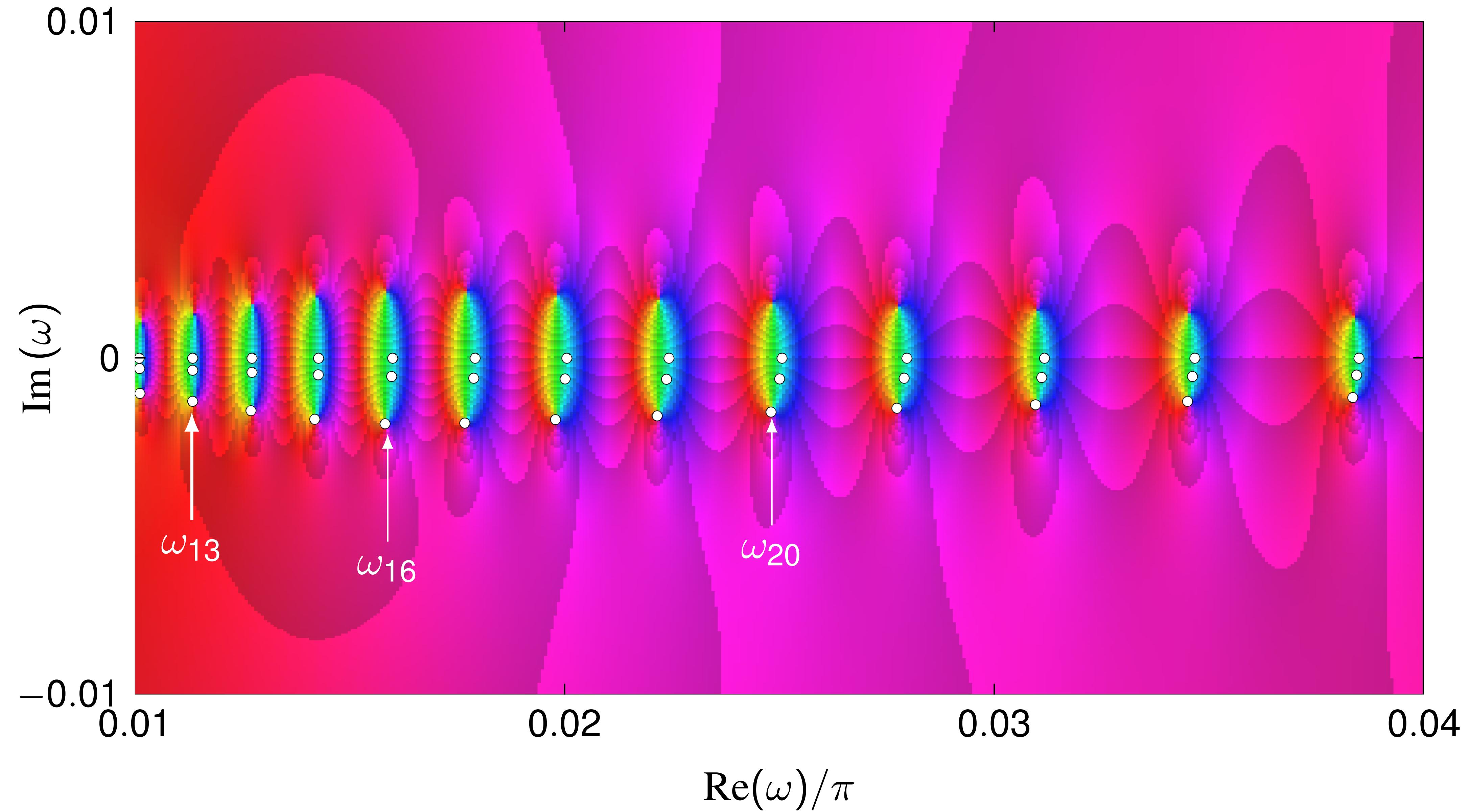
$$\mathcal{R}_f = \mathcal{R}_+ + \mathcal{T}_- (1 - \mathcal{R}_-)^{-1} \mathcal{T}_+ \quad \text{and} \quad \mathcal{R}_p = \mathcal{R}_+ - \mathcal{T}_- (1 + \mathcal{R}_-)^{-1} \mathcal{T}_+$$

- Construct homotopy in which $\mathcal{R}_+ \mapsto \mathcal{R}_\hbar$:

$$\mathcal{R}_\hbar = \mathcal{R}_+ + (1 - \hbar) \mathcal{T}_- (1 - \mathcal{R}_-)^{-1} \mathcal{T}_+ \quad \text{or} \quad \mathcal{R}_+ - (1 - \hbar) \mathcal{T}_- (1 + \mathcal{R}_-)^{-1} \mathcal{T}_+$$

- Start with eigenfrequencies and vectors for uncoupled problem (no flux or no pressure) and solve iteratively, e.g. for $\hbar = 0, 0.1, 0.2, \dots, 1$.

Reflection coefficient in complex frequency space



Blaschke product

- Note that

$|R|^2 = 1$ for $\omega \in \mathbb{R}$ i.e. energy conservation

and $R(\bar{\omega}) = |R(\omega)|^{-1} e^{i \arg\{R(\omega)\}}$.

Blaschke product

- Note that

$$|R|^2 = 1 \quad \text{for } \omega \in \mathbb{R} \quad \text{i.e. energy conservation}$$

and $R(\bar{\omega}) = |R(\omega)|^{-1} e^{i \arg\{R(\omega)\}}.$

- Define

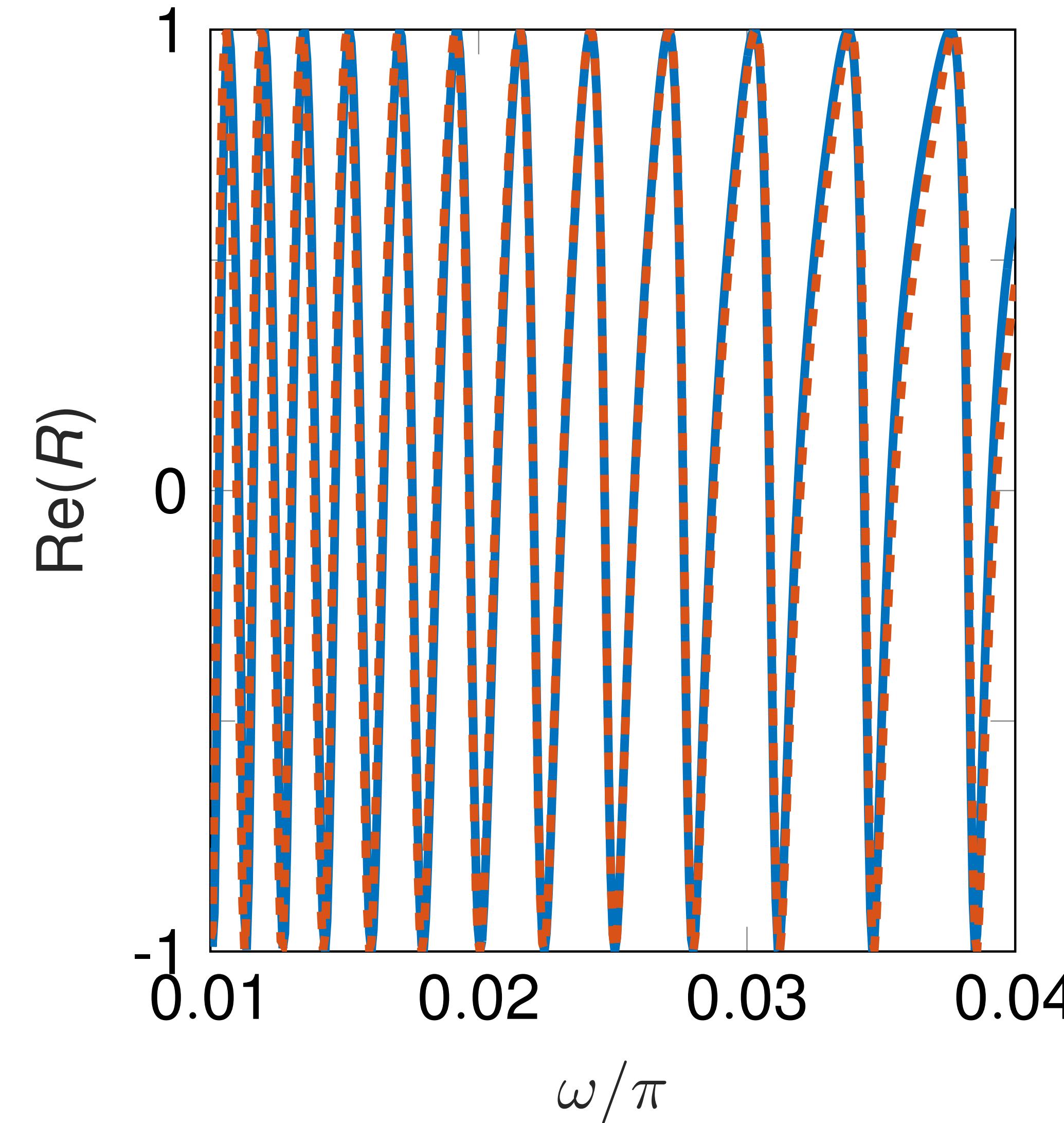
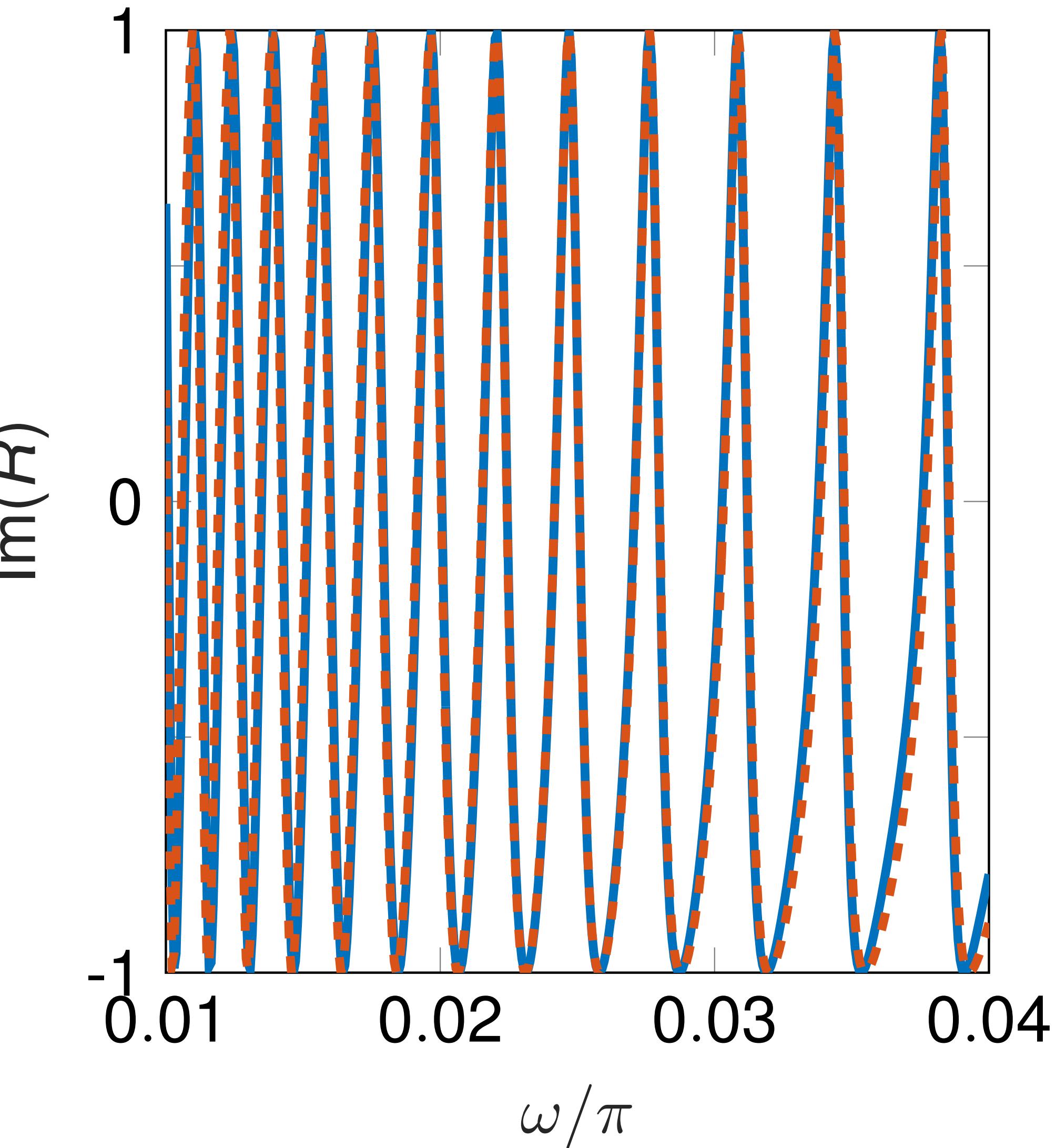
$$R_{\text{bl}}(\omega) = \prod_{n=1}^{\infty} r(\omega : \omega_n) r(\omega : -\bar{\omega}_n)$$

where

$$r(\omega : \varpi) = \frac{\omega - \bar{\varpi}}{\omega - \varpi}.$$

Blaschke product

— $R(\omega)$ - - - $R_{\text{bl}}(\omega)$



Incident wave packets and singularity expansion method

Gaussian incident packet

- Defined by the Fourier transform (in k)

$$\mathcal{F}\{u_{\text{inc}}\} = \frac{1}{\pi} \sqrt{2\beta} e^{-\beta(k-k_0)^2}$$

for prescribed

k_0 = chosen central wavenumber and β = chosen packet width.

Incident wave packets and singularity expansion method

Gaussian incident packet

- Defined by the Fourier transform (in k)

$$\mathcal{F}\{u_{\text{inc}}\} = \frac{1}{\pi} \sqrt{2\beta} e^{-\beta(k-k_0)^2}$$

for prescribed

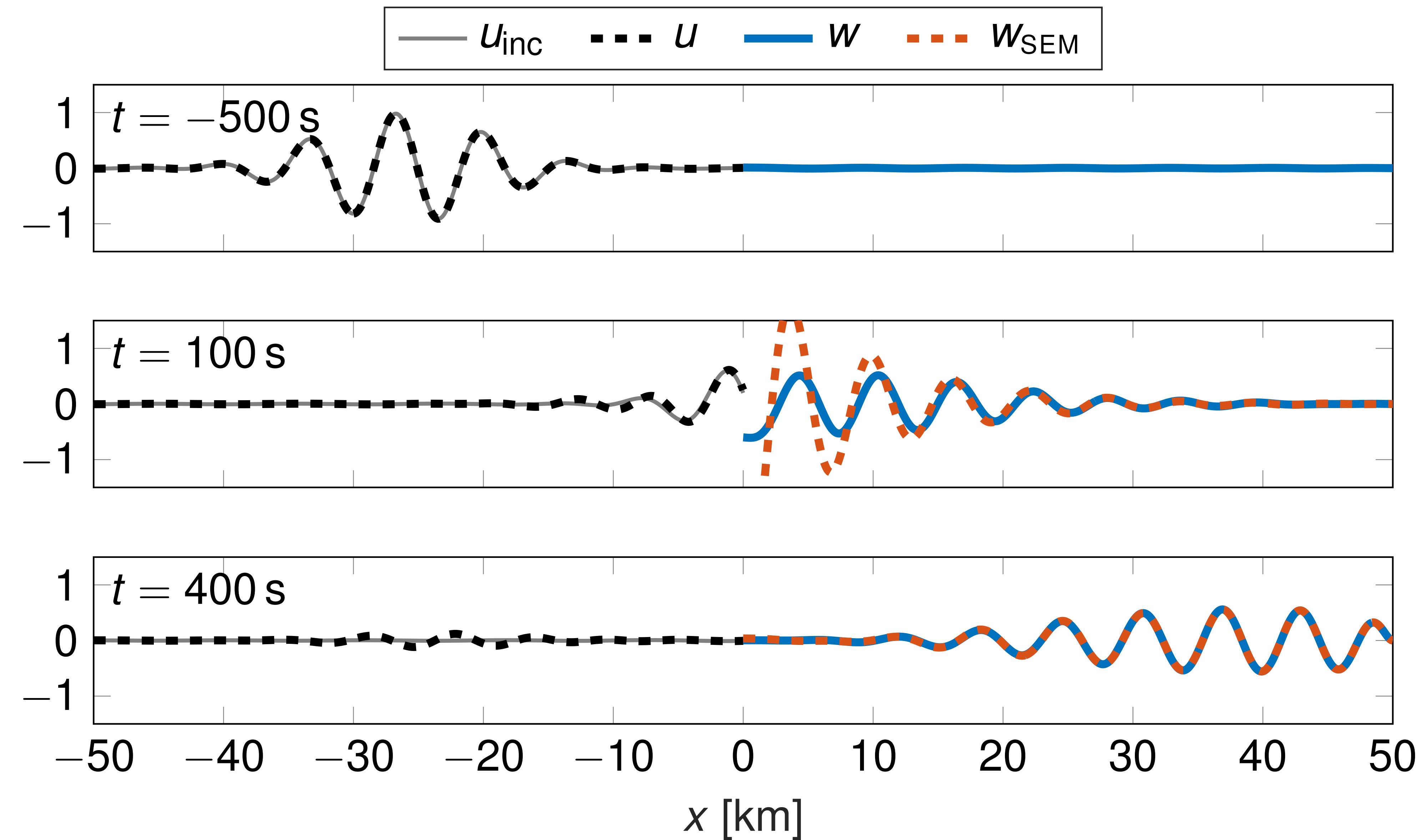
k_0 = chosen central wavenumber and β = chosen packet width.

Singularity expansion method

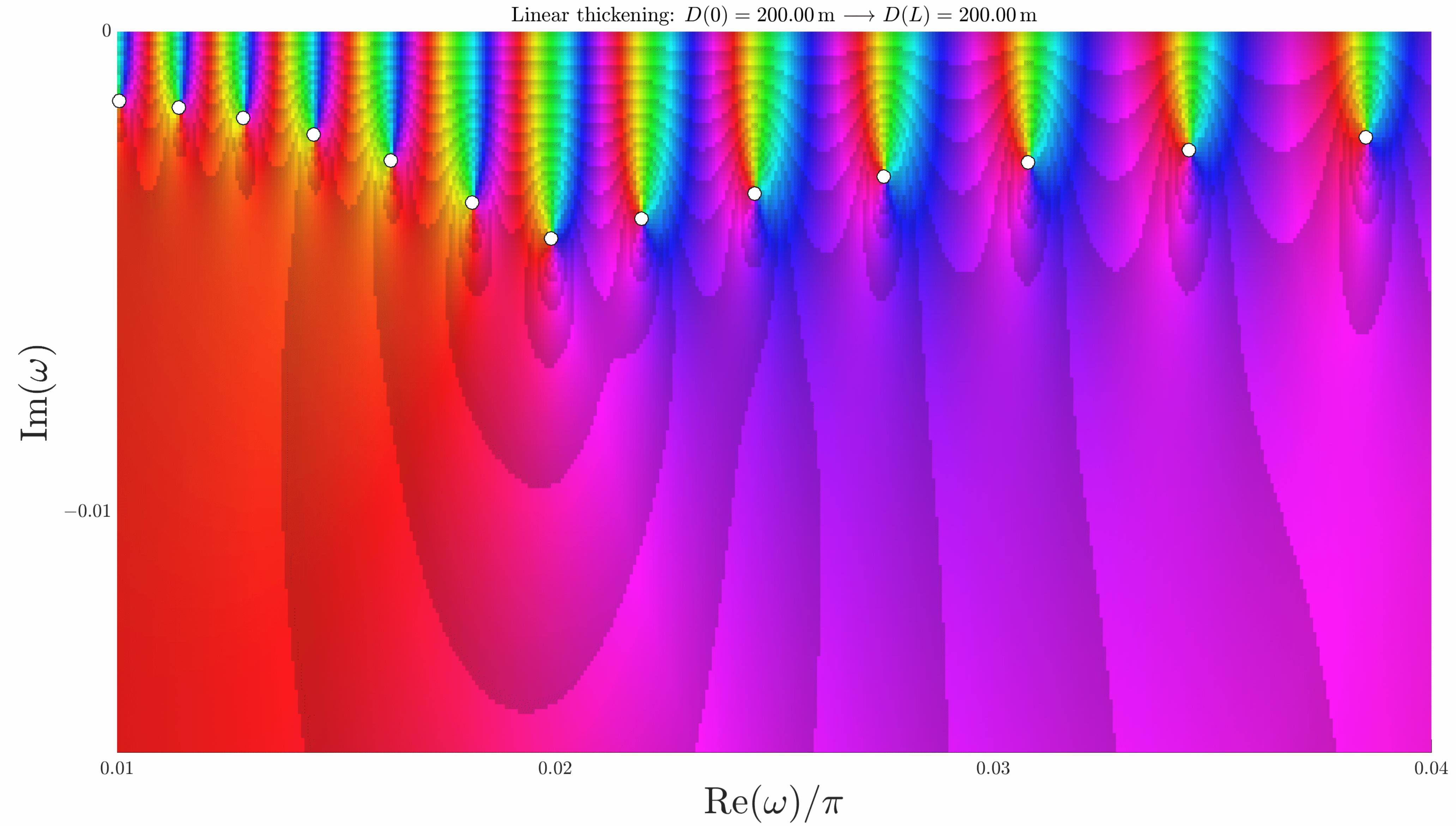
- For long times, the shelf displacement

$$w(x, t) \sim w_{\text{SEM}}(x, t) = \sum_{n=1}^{\infty} w_n(x, t) \quad \text{where} \quad w_n = \text{Re}\{A_n e^{-i\omega_n t}\}.$$

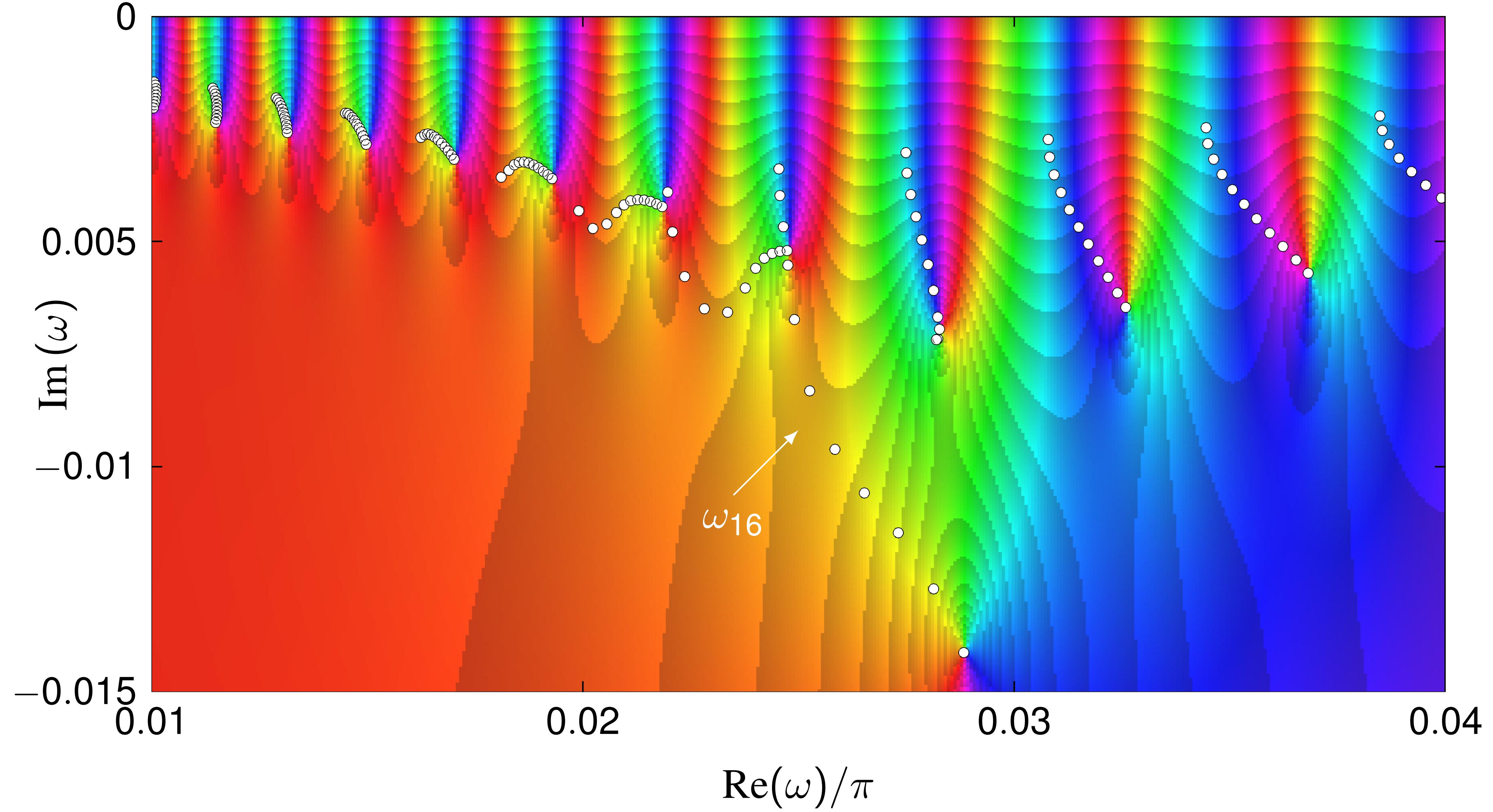
Example time domain simulation



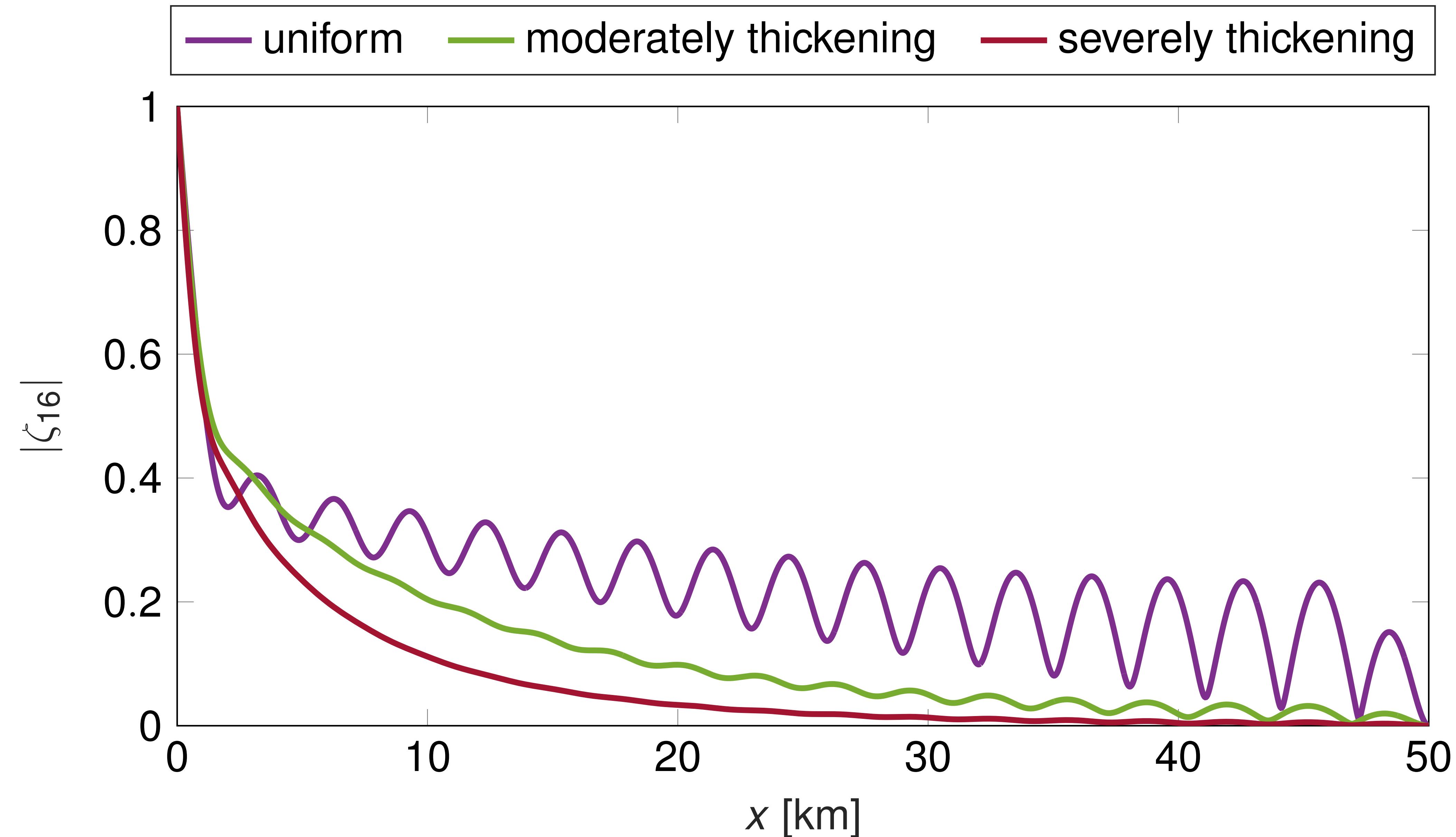
Thickening shelf: $R(\omega)$



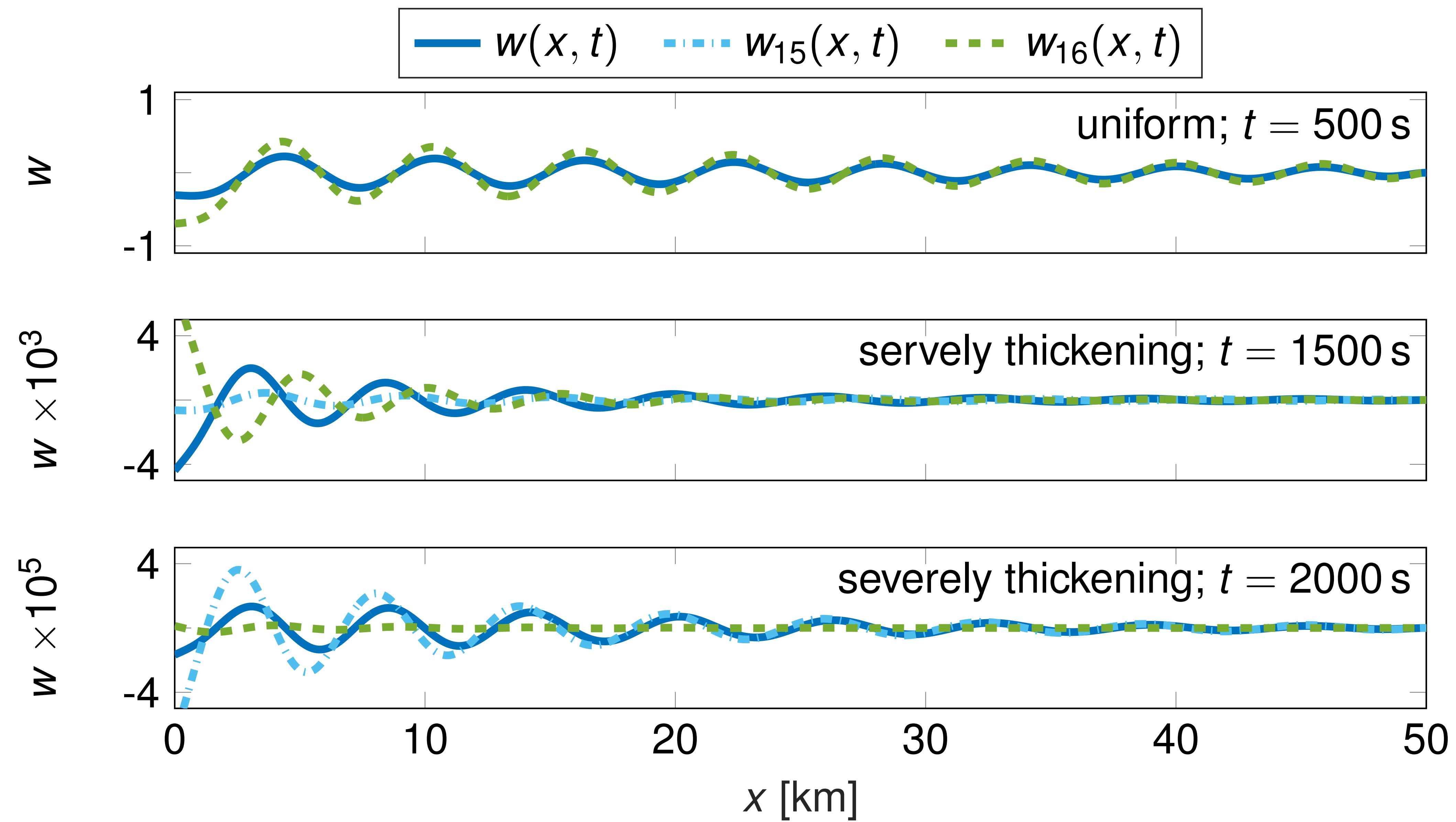
Thickening shelf: $R(\omega)$



Thickening shelf: complex resonant modes



Example time domain simulation



Summary

Methods

- Efficient method for non-uniform geometries.
- Homotopy method to find complex resonances.

Complex resonances

- Approximate frequency-domain solutions via Blaschke product.
- Capture long-time behaviour of transient solutions.

Thickening shelf

- Can prevent mid-range-frequency resonances from being excited.

@KOZ Waves

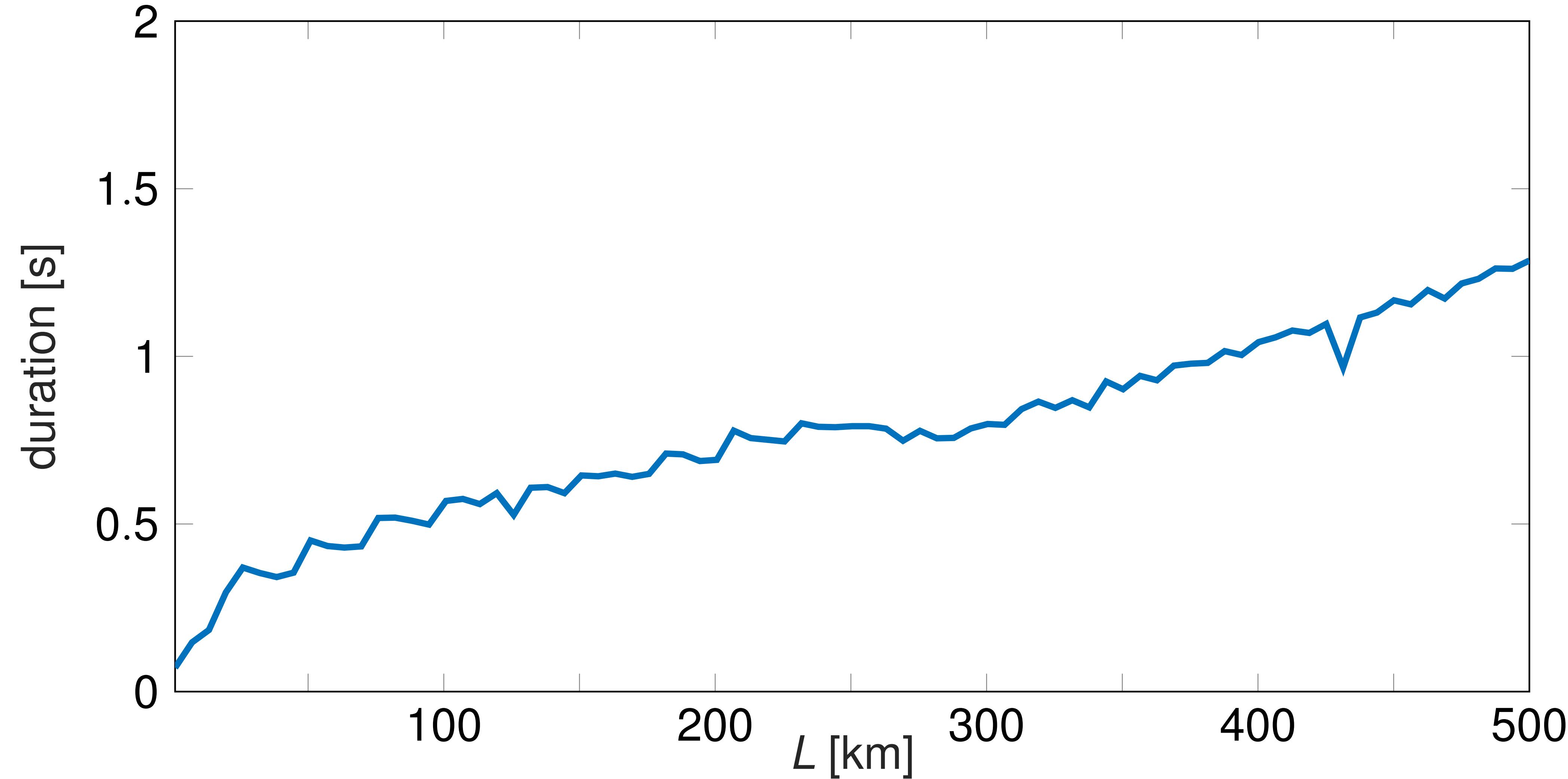
www.kozwaves.org

www.luke.bennetts.com

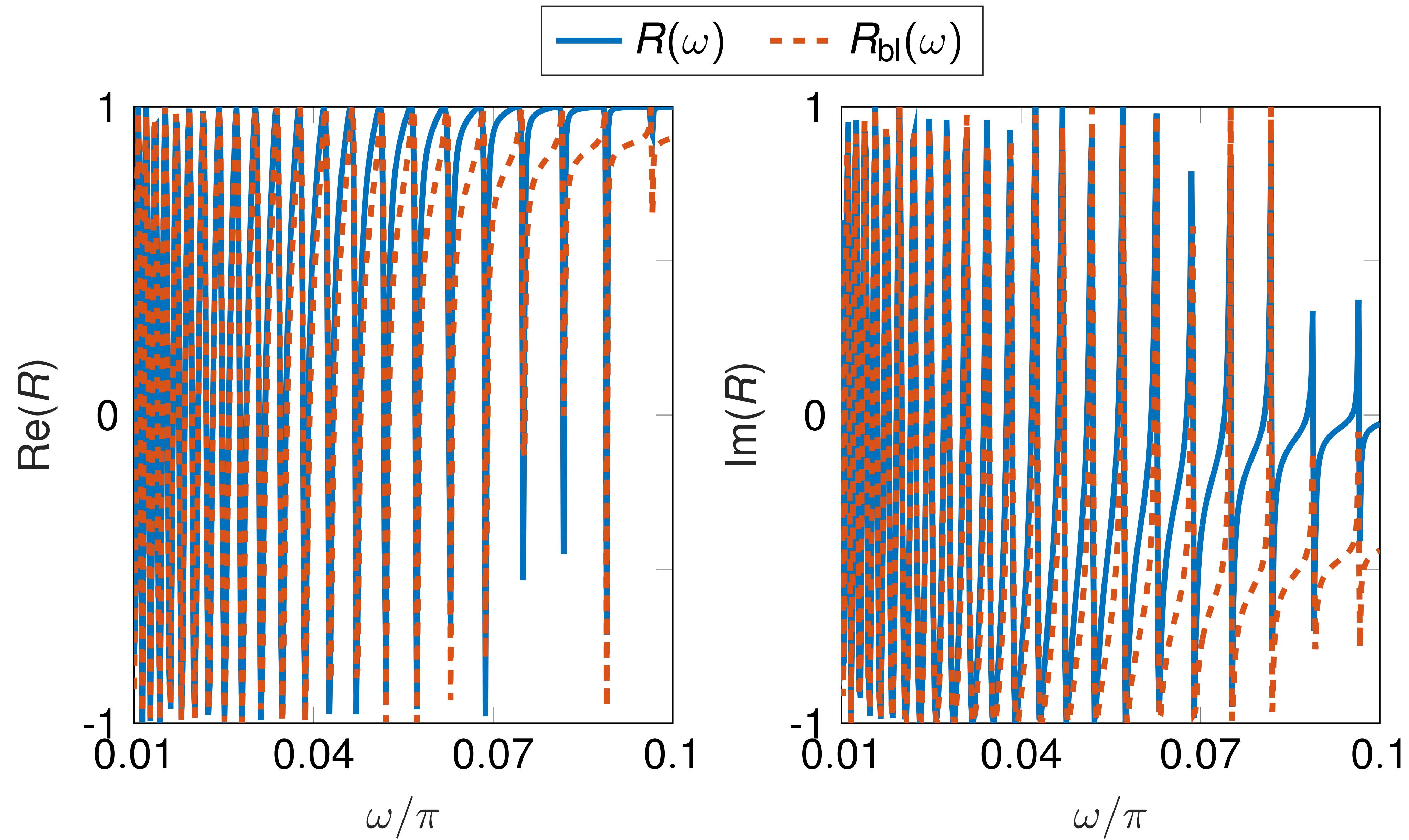
@LukeBennettsUoA

Coda

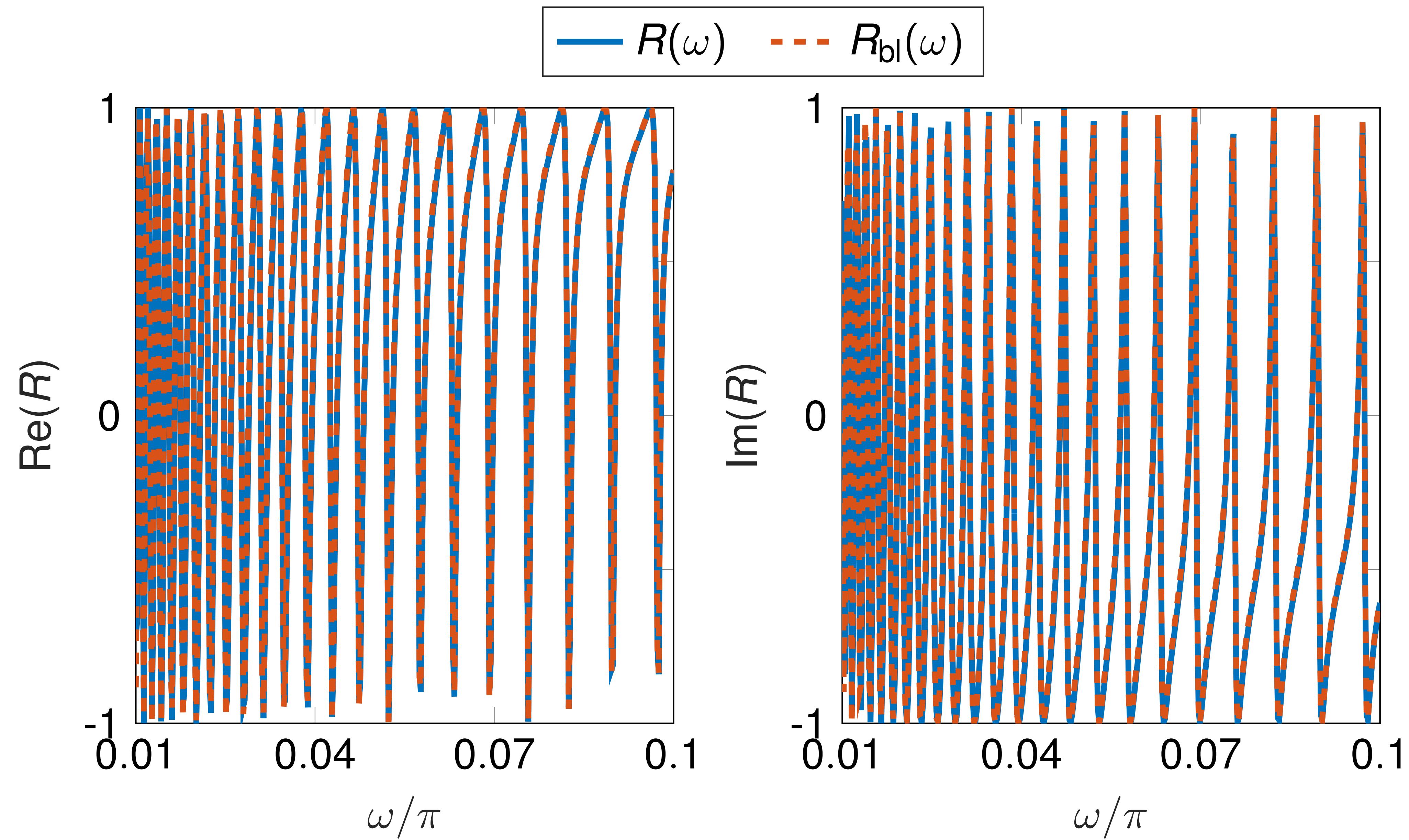
Efficiency of step approximation for varying geometry



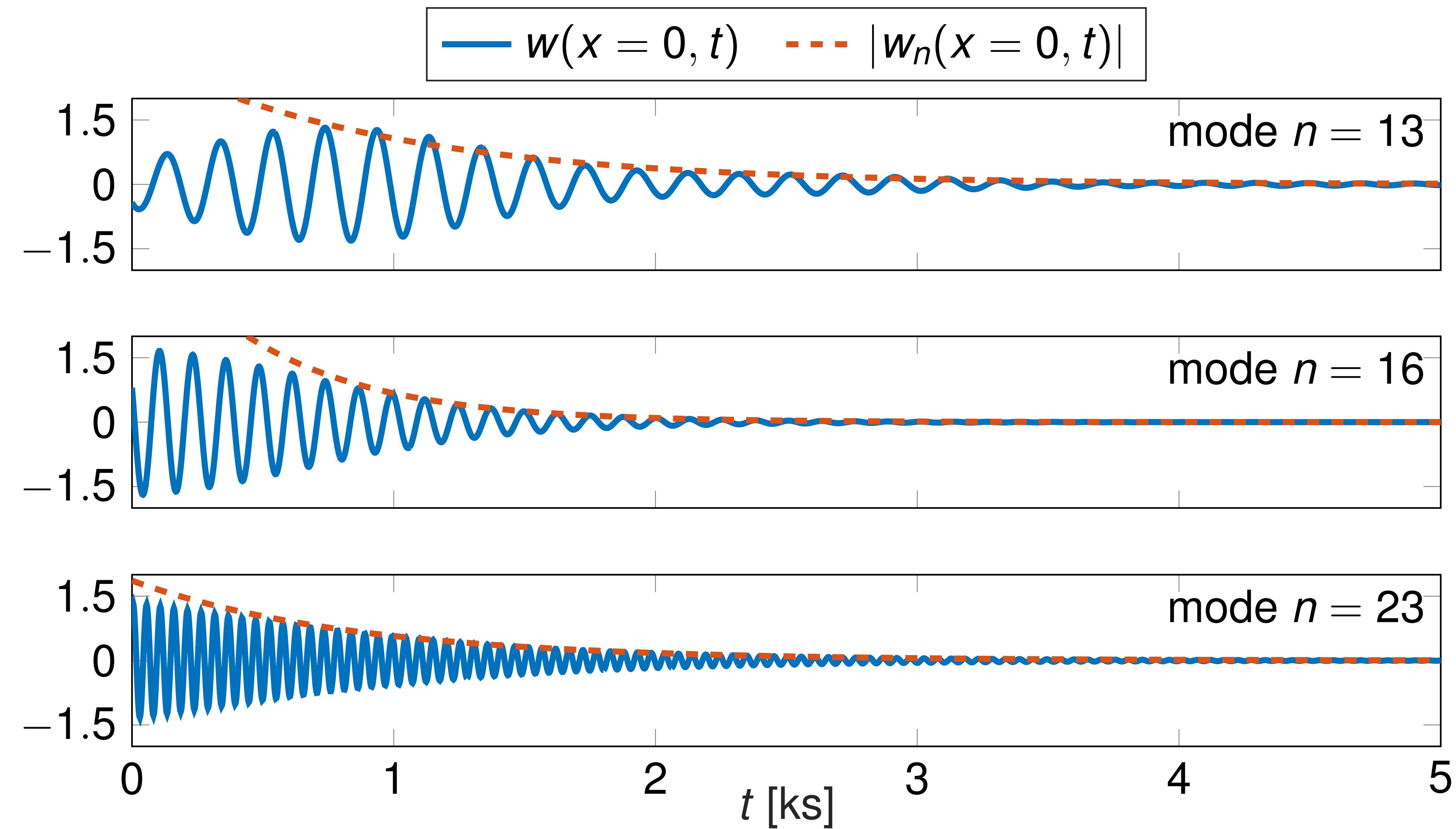
Blaschke product: Extended frequency range



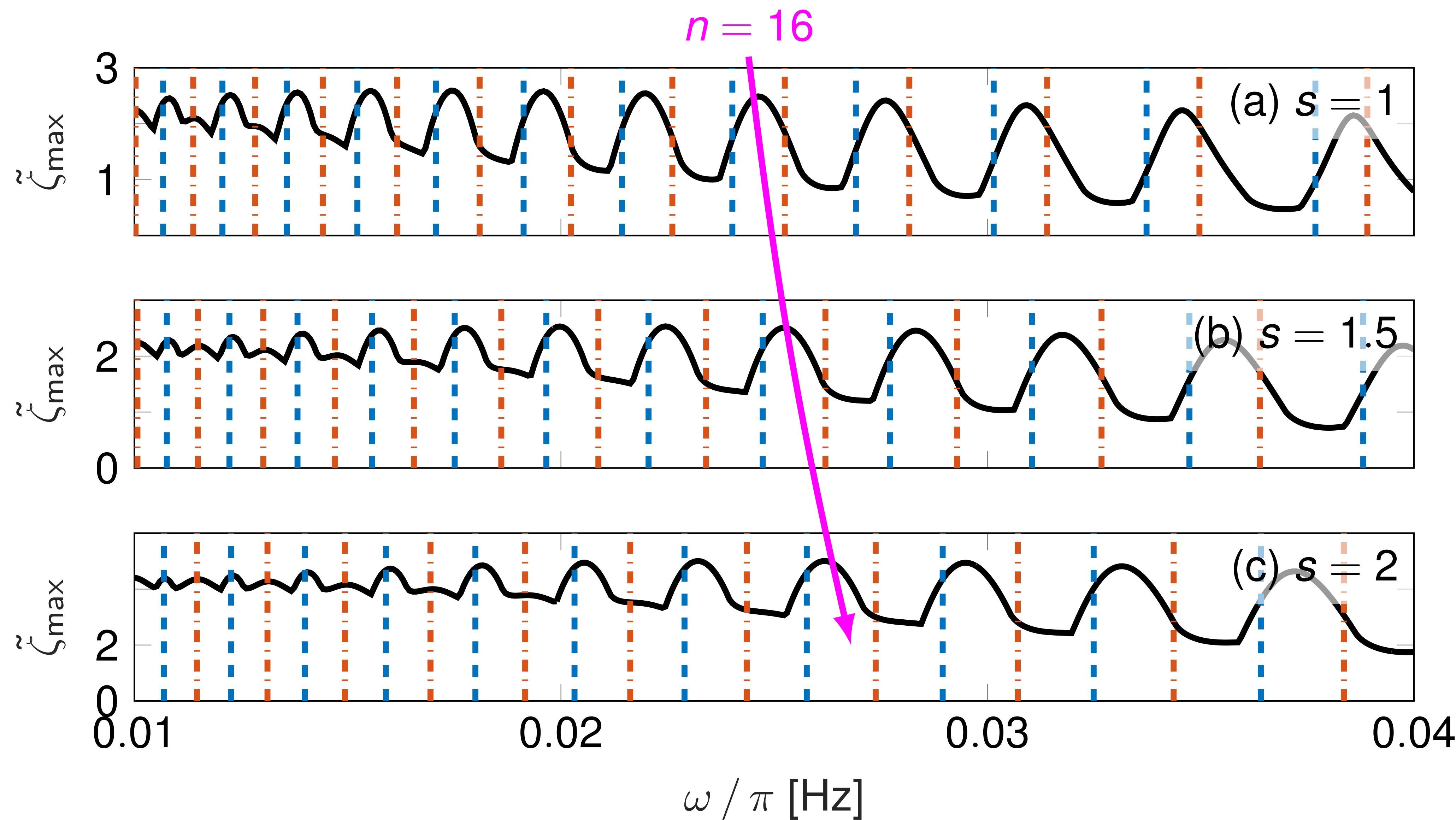
Blaschke product: Shallow-water approximation



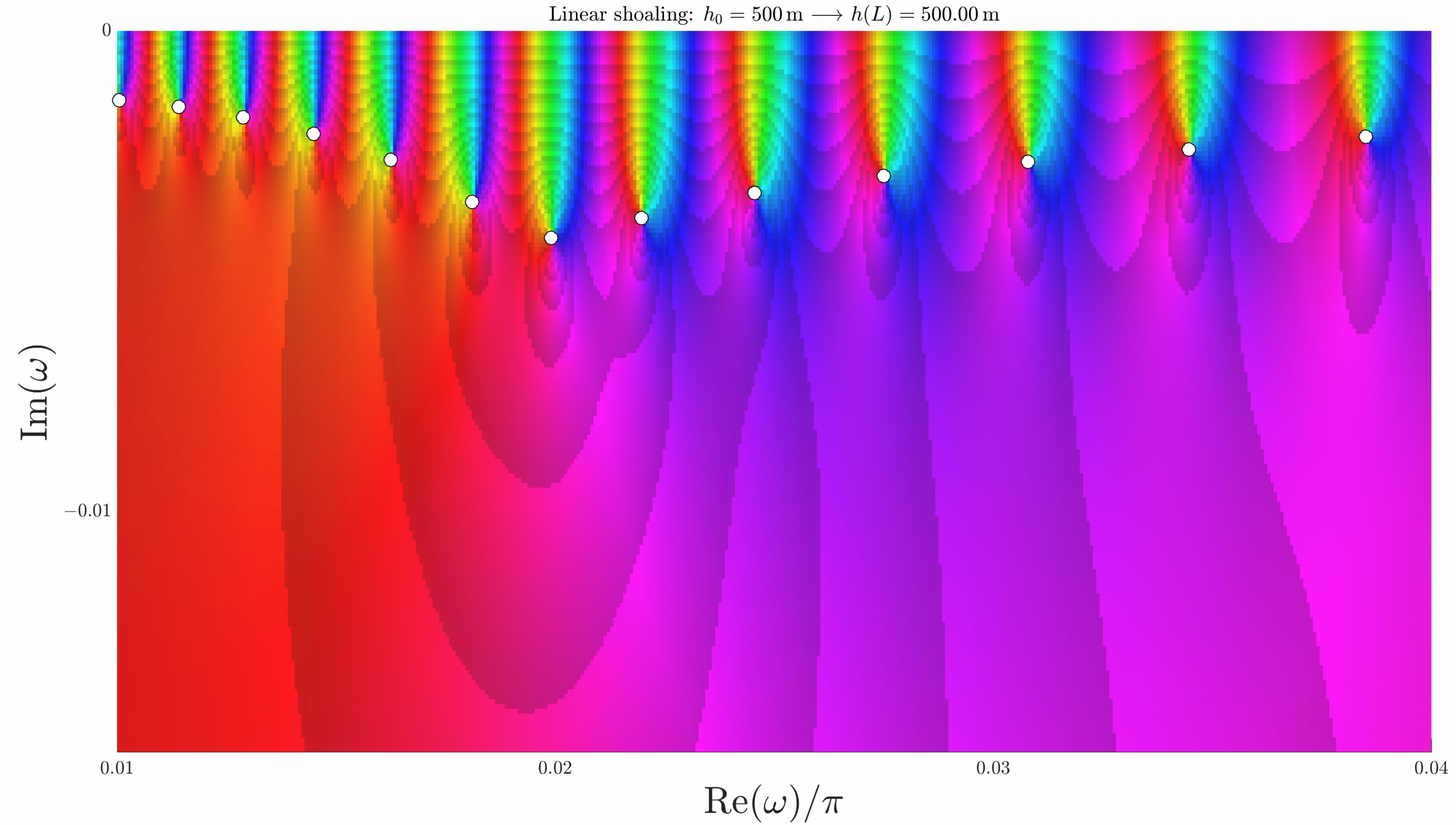
Resonant lifetimes



Maximum shelf displacement: Thickening shelf



Shoaling bed: $R(\omega)$



Thickening shelf: complex resonant modes η_n

