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Motivation:
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Max strain at period 50-100s or w/z = 0.02-0.04 Hz
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wave-induced shelf vibration measurements
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Standard model
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Model with thickening shelf and shoaling seabed
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@ Water velocity field is real part of

w € RT™ angular velocity (prescribed)

p € C velocity potential (unknown)

Re{o(x,z)e "' where {
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Governing equations

Single-mode approximation
@ Water velocity field is real part of
| w € RT™ angular velocity (prescribed)
Re{p(x,z)e '“"}  where
o e C velocity potential (unknown)
@ In open ocean

cosh k(z + hg) w?
S K tanh(K hy) = 0 =
d(X,Z) =~ po(X) cosh(k fig) where Kk tanh(k hy) = o g




Governing equations

Single-mode approximation
@ Water velocity field is real part of
| w € RT™ angular velocity (prescribed)
Re{p(x,z)e '“"}  where
o e C velocity potential (unknown)
@ In open ocean

N cosh k(z + hp) B w?
O(X,Z) ~ @o(X) cosh (K o) where k tanh(k hg) = o ;

@ In cavity

cosh k(z + h)

h 1 — [k h(k H) =
cosh( A where (1 —ocd+ T k")k tanh(kH) =0

P(X, Z) ~ p(X)




@ In open ocean, set
po(X) = Ainc (eikx T Re_ikx>

where A Is iIncident amplitude (prescribed), and R € C is the reflection
coefficient (unknown).
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Governing equations

Depth averaged equations

@ In open ocean, set
po(X) = Anc (¥ + Re71Fx)

where Ainc 1S Incident amplitude (prescribed), and R € C is the reflection
coefficient (unknown).

@ |n shelf/cavity, solve ODE system
(ap) +bp+0¢=0 and (1—od)C+L{C}—¢=0

with known coefficients a(x) and b(x), and where Re{((x)e ¥} is the shelf
vibration (unknown).




Governing equations

Depth averaged equations
@ In open ocean, set

po(X) = Ainc (eikx n Re—ikx)

where Ainc 1S Incident amplitude (prescribed), and R € C is the reflection
coefficient (unknown).

@ In shelf/cavity, solve ODE system

(ay) +bp+0¢=0 and (1—od)C+L{C}—¢=0
with known coefficients a(x) and b(x), and where Re{((x) e ¥} is the shelf
vibration (unknown).

@ + “jJump conditions" at x = 0, i.e. depth averaged continuities.
@ + shelf end conditions, I.e. free at x = 0 and clamped at x = L.



Accuracy of single-mode approximation (uniform geometry)

— Single mode - --finite depth

- = = Shallow water
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Maximum shelf displacement: Uniform geometry
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Uncoupled problems

Ol ice

shelf :

No flux , '
A p0)=0 1

Or sub-shelf
: water cavity

NO pressure
p0) =0 :
0

X

sergienko, J Glaciol, 2013; Meylan et al, J Glaciol, 2017; Papathanasiou et al, Ocean Model, 2019



Maximum shelf displacement: Uniform geometry
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@ Can be expressed as

/
and cC; <¢(0)> — 102 90(0): —21K R Ajnc

«O» «Fr « Z» « E» = vyqQ>



@ Can be expressed as

(0
o (29) 4 iy s0)- 2ik A

/

@ Resonance if non-zero solution for A, = 0, I.e.
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Jump conditions

@ Can be expressed as

(0
C1 (goli )> +1Co p(0)= 21K Ainc

/
and ¢ (¢i°)> i p(0)= —2i k R Anc

@ Resonance if non-zero solution for A, = 0, I.e.

/
SOI({O) FiCp(0) =0 where

@ Closer to no-flux condition if C <« 1 and no-pressure condition if C > 1.




Maximum shelf displacement: Uniform geometry
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@ Resonance occurs at w = wy € Cand ((x) = (m(x) (m=1,2,...).

@ Complex frequencies wn, lie in lower-half complex plane.
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Complex resonances

@ Resonance occurs atw =wpn e Cand ((x) =(m(x) (m=1,2,...).
@ Complex frequencies wm lie in lower-half complex plane.

@ Analytically extend dispersion relations for complex frequencies.

@ Must find complex-valued wavenumbers k and k.

@ Increases computational expense.




Complex resonances

@ Resonance occurs atw =wpn e Cand ((x) =(m(x) (m=1,2,...).
@ Complex frequencies wm lie in lower-half complex plane.

@ Analytically extend dispersion relations for complex frequencies.

@ Must find complex-valued wavenumbers k and k.

@ Increases computational expense.

@ Uncoupled eigenfrequencies € R = easy/cheap to calculate.

@ Complex frequencies € C = difficult/expensive to calculate.




@ Find wy, from det(M) = 0, where M is 6 x 6 matrix

B T —R i (w)E(w)
Mlw) = ( —Rig(w) E(w) + L )

«O)>» «FHH)» « Z)» « =) = YvYyyqQ»



Homotopy method

@ Find wy, from det(M) = 0, where M is 6 x 6 matrix

_ L —Ry(w) E(w)
Mw) = ( —Rid(w) &(w) ) L )

@ Uncoupled eigenfrequencies satisfy similar relation, but with % — s or Rp:

Ri=Ro+T-(1-R) "7, and Rp=R,—-T- (1+R_) T,




Homotopy method

@ Find wy, from det(M) = 0, where M is 6 x 6 matrix

_ L —Ry(w) E(w)
Mw) = ( —Rid(w) &(w) ) L )

@ Uncoupled eigenfrequencies satisty similar relation, but with R, — Rs or Ry:
Ri=R:i+T (1-R)'T, and Rpy=R,-T (1+R.) " T,
@ Construct homotopy in which R, — Rp:
Re=Ri+(1-RT-(1-R) "7 or Rey—(1-hWT-(1+R) " T,

@ Start with eigenfrequencies and vectors for uncoupled problem (no flux or no
pressure) and solve iteratively, e.q. for




Reflection coefficient in complex frequency space
0.01




@ Note that

R°=1 for weR i.e.energy conservation

and R(w)= |R(w)|~ e 2retAlwi

«O» «Fr « Z» « E» = vyqQ>



@ Note that

R°=1 for weR i.e.energy conservation

and R(w@)= |R(w)|~ e 2retAlwi

@ Define

0

R (w) = H r(w: wnp)r(w: —wn)
n=1

where

W — W
r(w:w):w_w.
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Blaschke product

— R(w) --- Ru(w)
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Incident wave packets and singularity expansion method

Gaussian incident packet
@ Defined by the Fourier transform (in k)

1
Flunc} = = /2Be P kk)

T

for prescribed

Ko = chosen central wavenumber and S = chosen packet width.




Incident wave packets and singularity expansion method

Gaussian incident packet
@ Defined by the Fourier transform (in k)

1 Ak
F{Unc} = - , /25e B (k—kp)?

for prescribed

Ko = chosen central wavenumber and S = chosen packet width.

Singularity expansion method
@ For long times, the shelf displacement

w(x,t) ~ Wsem(X, t) Z Wn(x,t) where w, = Re{Ane_i“’”’}.



Example time domain simulation
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R(w)

Thickening shelf
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Linear thickening: D(0)




Thickening shelf: R(w)

0.005

Im (w)

—0.01

—0.015
0.01

0.02

Re(w) /T

0.04



Thickening shelf: complex resonant modes
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Example time domain simulation

_W(X7 t) W15(X7 t) R W16(X7 t)
I ) ' uniform; t = 500s
g as
S 4 1“ . | servely thickening; t = 1500s
| | -
s 4 | severely thickening; t = 2000 s
g '4 » | | | | _
0 10 20 30 40 50

x [km]



Summary

Methods
@ Efficient method for non-uniform geometries.

@ Homotopy method to find complex resonances.

Complex reonances
@ Approximate frequency-domain solutions via Blaschke product.
@ Capture long-time behaviour of transient solutions.

Thickening shelf
@ Can prevent mid-range-frequency resonances from being excited.
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Efficiency of step approximation for varying geometry
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Blaschke product: Extended frequency range

— R(w) --- Ru(w)
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Blaschke product: Shallow-water approximation

— R(w) --- Ru(w)
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Resonant lifetimes
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Maximum shelf displacement: Thickening shelf

n=16
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Thickening shelf: complex resonant modes 7,

— uniform —— moderately thickening —— severely thickening
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