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Abstract

A numerical model, based on the two-phase incompressible Navier–Stokes equations, is used to
study transmission of regular water waves by a thin floating plate in 2D. The model is shown to
capture the phenomenon of waves overwashing the plate, and the generation of turbulent bores on
the upper plate surface. It is validated against laboratory experimental measurements, in terms of
the transmitted wave field and overwash depths, for a set of incident wave periods and steepness
values. Corresponding simulations are performed for a thick plate that does not experience over-
wash, which are validated using experiments where an edge barrier prevents thin-plate overwash.
The model accurately reproduces (i) the linear relationship between the transmitted and incident
amplitudes for the thick plate, and (ii) the decrease in proportion of incident-wave transmission
for the thin plate, as incident steepness increases. Model outputs are used to link the decreasing
transmission to wave-energy dissipation in the overwash, particularly where bores collide, and in
the surrounding water, particularly at the plate ends. It is shown that most energy dissipation
occurs in the overwash for the shortest incident waves tested, and in the surrounding water for
the longer incident waves. Further, evidence is given that overwash suppresses plate motions, and
causes asymmetry in plate rotations.

1 Introduction

A series of laboratory experiments have been conducted to investigate interactions between water
waves and thin floating plates, in the so-called scattering regime, where wavelengths and plate lengths
are comparable, so that wave propagation and plate dynamics are strongly coupled. A hallmark of
the experimental tests has been incident waves spilling onto the upper plate surface, and generating
turbulent shallow-water bores (hydraulic jumps) that propagate along the plate surface. The phe-
nomenon is known as overwash, and occurs even for small incident amplitude/steepness, due to the
small freeboard of the plates. In the earliest set of experiments, which were analysed by Montiel et al.
(2013b,a) with a focus on elastic plate responses, a barrier was attached around the perimeter of the
plate to prevent overwash, and the resulting wave-induced plate motions were shown to agree with
predictions from a linear model. Meylan et al. (2015) subsequently showed that, perhaps surprisingly,
linear model predictions of plate motions are still accurate for a plate with no barrier when overwash
occurs, although Bennetts & Williams (2014), McGovern & Bai (2014) and Yiew et al. (2016) found
that rigid-body response amplitude operators (RAOs; i.e. rigid-body-mode amplitudes relative to the
incident wave amplitude) decrease as the incident wave steepness increases, and attributed this to
increasing overwash depths. In comparison, Yiew et al. (2016) showed that when an edge barrier is
used to prevent overwash, RAOs are insensitive to incident steepness.

Bennetts & Williams (2014) studied transmission of regular waves by an array of 40 circular thin
wooden plates for small amplitude incident waves over a range of incident wavelengths, and a limited
number of larger incident amplitudes. Their results indicated the transmission coefficient (transmitted
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amplitude relative to the incident amplitude) decreases for increasing wave amplitude in the scattering
regime, and they linked it to observations of increased overwash depth for the larger amplitudes.
Subsequently, Bennetts et al. (2015) studied transmission of regular waves by a solitary square plastic
plate, for a range of incident wavelengths and steepness values, up to storm-like waves with steepness
k ainc = 0.15 (although not reaching the wave-breaking limit). They found the transmitted wave
field is regular for low incident steepness, as predicted by linear models, but highly irregular for
larger steepness, and, consistent with Bennetts & Williams (2014), showed the transmission coefficient
tends to decrease with increasing incident steepness. They related the irregularity and decreasing
transmission to increasing overwash depths, which they measured using a wave gauge deployed at
the centre of the upper plate surface. Toffoli et al. (2015) studied transmission of regular waves by
a solitary plastic plate in the simplified, essentially-2D setting of a 2 m-wide wave flume, where the
plate extends across the breadth of the flume, and is loosely moored to prevent drift down the tank.
They showed a linear model accurately predicts transmitted amplitudes for small incident steepness,
but increasingly overpredicts them as the incident steepness increases, and correlated the reduced
transmission with wave-energy dissipation, which they attributed to wave breaking in deep, energetic
overwash when bores generated at the front and rear ends of the plate collide. Nelli et al. (2017)
studied an extended dataset to Toffoli et al. (2015), containing tests on a plate with an edge barrier,
and showed that a linear transmission model accurately predicts transmission coefficients for the plate
with a barrier, for all incident steepness values tested, up to k ainc = 0.15.

Overwash is a highly nonlinear process; it is not included in linear models (e.g. Meylan & Squire,
1994) or weakly-nonlinear models (e.g. Hegarty & Squire, 2008). However, the occurrence of overwash
can be predicted in a straightforward manner from linear model outputs, when the free surface next
to a plate end is higher than the plate end. Skene et al. (2015) used linear model predictions of
the height of the free surface above the plate ends to force a nonlinear shallow-water model of over-
wash, and showed that the composite linear-potential-flow/nonlinear-shallow-water theory accurately
predicts overwash depths from the experiments analysed by Bennetts et al. (2015), up to an inci-
dent steepness where wave breaking occurs in the overwash. Skene et al. (2018) subsequently showed
that—for the simplified problem of overwash of a step, where bore collisions do not occur—theoretical-
model predictions are accurate in comparison to 2D numerical simulations based on the two-phase
(air/water), incompressible Navier–Stokes equations, for all incident amplitudes tested (maximum
steepness k ainc = 0.13), as long as no-shear boundary conditions are applied on the step surface.
Skene et al. (2015) did not model the influence of overwash on the surrounding water, so could not
predict the decrease in transmission with increasing incident steepness. Orzech et al. (2016) proposed a
3D numerical model of wave transmission through multiple floating plates, based on the single-phase,
incompressible Navier–Stokes equations, with the capability of capturing overwash. However, they
reported no overwash in their simulations, presumably because they tested wavelengths several times
longer than the plates.

In this work, a 2D numerical, two-phase, incompressible Navier–Stokes model is used to investigate
wave transmission by a solitary thin plate in the presence of overwash. Zhao & Hu (2012) and Chen
et al. (2019) used laboratory experimental data to validate similar models for the related phenomena
of green water on ship decks, which also involves waves breaking onto the surface of a body and
forming shallow-water flows characterised by bores. Here, the experimental tests analysed by Nelli
et al. (2017) are simulated numerically, with a thick plate used for the experimental tests where a
barrier was attached to the plate edge. Numerical–experimental comparisons are used to validate the
model, for the transmitted field and the overwash depth, where the latter uses data from two gauges
deployed at the front and rear of the plate in the experiments, which were not reported by Nelli et al.
(2017). Numerical outputs are analysed (i) to gain understanding of the influence of overwash on plate
motions, and (ii) to identify the sources of wave energy dissipation during wave–plate interactions,
which have not been measured in experiments due to technical difficulties in measuring the relevant
quantities.
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Figure 1: Schematic (not to scale) of the numerical wave flume with grey box denoting the plate.

2 Numerical model

A numerical model is used to simulate wave-flume experiments analysed by Nelli et al. (2017), in
which regular incident waves interacted with a 1 m long, 1.9 m wide and 0.01 m thick polyvinyl chloride
(PVC) plastic plate, loosely moored to the floor of a 2 m wide wave flume. Tests were conducted for
three incident periods, giving incident wavelengths comparable to the plate length, and five incident
steepness values, ranging from mild to storm like. Each test was conducted three times to assess
repeatability, and the tests were also conducted for the plate with an edge barrier to assess the effects of
overwash on transmission. The tests are considered as being 2D, as wave-gauge measurements of both
the reflected and transmitted fields were insensitive to location across the flume width, and movies from
downward-point cameras mounted above the plate indicate overwash properties are approximately
uniform across the plate width (Movie S1), notwithstanding small features in the overwash generated
at its corners. No effects of occasional collisions between the plate and the flume sidewalls were
observed in the measurements.

Consider a 2D model flume, as shown in Fig. 1, of length 40 m, containing water of quiescent depth
Hw = 0.9 m, density ρw = 1000 kg m−3 and dynamic viscosity µw = 1.00 × 10−3 Pa s. The flume is
bounded at the left-hand end by a piston-type virtual wave maker (different from the elliptic type
used in the experiments) and at the right-hand end by a virtual beach (an additional 30 m length of
flume in which the mesh gradually coarsens to damp the waves reaching it). A Cartesian coordinate
system x = (x, z)T defines locations in the flume, where the origin of the vertical coordinate, z = 0,
coincides with the undisturbed water surface, and incident waves travel in the positive x-direction.

In the model, a rigid plate of length l = 1 m and thickness h floats at the surface of the water,
with its front (left-hand) end −xwm = 29 m from the wave maker and xbh = 11 m from the beach
(Fig. 1). The equilibrium plate draft obeys the Archimedean principle, such that its lower surface
is zL = −ρp h / ρw, in which ρp is the plate density. The plate is free to move in rigid body heave
(up–down translation) and pitch (rotation). Translations in the x-direction (oscillatory surge and net
drift) are omitted, whereas the loose experimental mooring only restricts drift and permits surge.

The wave maker is run at a prescribed frequency and amplitude (i.e. linear signal, mimicking the
experiments) to generate regular incident waves of period Tinc and amplitude ainc. A proportion of
the wave is transmitted to the right-hand side of the plate, and a proportion is reflected back towards
the wave maker. As will be shown, the remaining proportion of the wave energy is dissipated during
the wave–plate interactions. The wave maker runs for long enough to generate ≥ 10 wave periods to
interact with the plate following the initial transients.

Wave–plate interactions create wave breaking, vortices and air entrainment. Following the green-
water studies of Zhao & Hu (2012) and Chen et al. (2019), compressibity of entrained air is considered
negligible, noting that compressibility of entrained air is less likely to affect results in the tests consid-
ered here, as the incident wave steepness is smaller. Adding compressibility to the model would incur
a major computational cost (Mart́ınez Ferrer et al., 2016). Hence, water motions around the plate are
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modelled using the two-phase, incompressible Navier–Stokes equations

∇ · u = 0, (1a)

∂(ρu)

∂t
+∇ · (ρu u)−∇ · (µ∇u) = −∇p∗ − gz∇ρ+∇u · ∇µ+ σ κ∇α, (1b)

and
∂α

∂t
+∇ · (αu) = 0 (1c)

(Higuera et al., 2013). Eqs. (1a–c) hold in the domain

Ω = {(x, z) : xwm < x < xbh and −Hw < y < Ha}\Ωp, (2)

consisting of the water domain plus air above the water, of equilibrium depth Ha = 0.4 m, density
ρa =1.225 kg m−3 and dynamic viscosity µa = 1.80×10−5 Pa s, and where Ωp(t) is the moving domain
occupied by the plate. In Eqs. (1a–c),

u(x, z, t) =

(
u(x, z, t)
w(x, z, t)

)
is the velocity field, (3)

α(x, z, t) ∈ [0, 1] is the local phase fraction of water (α = 0 denotes pure air and α = 1 denotes
pure water), ρ(x, z, t) = α(x, z, t) ρw + (1−α(x, z, t)) ρa is the fluid density, µ(x, z, t) = α(x, z, t)µw +
(1 − α(x, z, t))µa is the fluid viscosity, p∗(x, z, t) = p(x, z, t) − ρ(x, z, t) g z is the pseudo-dynamic
pressure where p(x, z, t) is the pressure, g = 9.81 m s−2 is the constant of gravitational acceleration,
σ = 0.07 Pa m is the surface tension coefficient, and

κ = ∇ · ∇α|∇α| is the interface curvature. (4)

Physically, Eq. (1a) represents conservation of mass, (1b) conservation of momentum, and (1c) phase
advection.

The motion of the plate is coupled to the surrounding fluid motion via the no-slip condition

u(Γp, t) =
dΓp

dt
, (5)

where Γp(t) denotes the moving plate boundary. The plate and surrounding fluid are also coupled via
the dynamic conditions (equations of motion)

M
d2Zc

dt2
=− g z +

∮
Γp

(
p nz − µ

[
2
∂w

∂z
nz +

(
∂u

∂z
+
∂w

∂x

)
nx

])
ds, (6a)

and I
d2θ

dt2
=

∮
Γp

(x−Xc)

(
p nz − µ

[
2
∂w

∂z
nz +

(
∂u

∂z
+
∂w

∂x

)
nx

])
ds

−
∮
Γp

(z − Zc)

(
p nx − µ

[
2
∂u

∂x
nx +

(
∂u

∂z
+
∂w

∂x

)
nz

])
ds. (6b)

The no surge/drift condition is
Xc = constant, (7)

where (x, z) = (Xc, Zc(t)) is the location of the plate’s centre of gravity, θ(t) is the pitch angle,
n = (nx, nz)

T is a unit normal to the plate boundary (pointing into the plate), M = ρp l h is the plate
mass, and I = M (h2 + l2) / 12 is its moment of inertia.
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Figure 2: Schematic (not to scale) indicating the free surface elevation η(x, t) and overwash depth
how(xp, t) around the moving plate (grey box).

The open source software IHFOAM (http://ihfoam.ihcantabria.com) is used to solve Eqs. (1a–
c) plus the boundary conditions (5)–(7). IHFOAM is based on the software OpenFOAM (Higuera
et al., 2013), and employs a volume of fluid solution method (as in OpenFOAM) on a grid of square
cells with side lengths ∆x = ∆z, and a floating rigid body motion solver (Urquhart, 2016), with a
dynamically coupled deforming mesh solver, involving a toroidal area around the plate in which cells
squeeze and stretch into parallelograms in order to accommodate the plate motions (Movie S2).

Model outputs for the fluid motion are the velocity field, u(x, t), the pressure field, p(x, t), and
the phase fraction α(x, t). In x-intervals away from the plate, the free surface elevation, z = η(x, t)
(Fig. 2), is calculated following Deshpande et al. (2012) as

η(x, t) =

∫ Ha

−Hw

α(x, t) dz −Hw. (8)

A transmitted amplitude atra is calculated from the elevation η at x = 3 m, using a standard zero-
crossing method (Emery & Thomson, 2001), i.e. consistent with Nelli et al. (2017). In the plate covered
interval, the expression for the free surface is adapted to calculate the overwash depth, how(xp, t),
measured normal to the plate surface (Fig. 2), which is consistent with the experimental measurements
discussed in §1, where xp denotes distance along the plate surface (see Fig. 2), i.e. it is the horizontal
coordinate in the frame of reference of the moving plate.

For the plate, the model outputs the vertical motion of the centre of gravity, Zc(t), and the pitch
angle, θ(t), from which the plate boundary Γp(t) is obtained. They are converted into the response
amplitude operators (RAOs)

Ahv =
|âh|
|â| for heave, (9a)

and Apt =
tan(|âp|)
k |â| for pitch, (9b)

where k is the (linear) wavenumber, and âh, âp and â are complex-valued amplitudes given by the dis-
crete Fourier transforms of Zc, θ and [ηinc]x=0.5m, respectively, and evaluated at the incident frequency
f = finc ≡ 1 / Tinc, where the surface elevation ηinc is from a simulation without a plate.

The computational cost of IHFOAM is prohibitive, with a single simulation for 0 ≤ t ≤ 25 s, using
cell lengths ∆x = 1 mm and (varying) time-steps that ensure the Courant number < 1, taking > 700 h
on 80 parallelised processors. Therefore, as shown in Fig. 1, IHFOAM is applied only on the subdomain
ΩIHFOAM = {x ∈ Ω : x > −3 m} ⊂ Ω, containing the plate. Wave forcing is generated at x = 3 m,
which approximates the incident wave from the wave maker in the flume, i.e. at x = −29 m. The
approximation is based on nonlinear potential-flow theory, i.e. assuming the water is incompressible,
inviscid and undergoing irrotational motions, and a constant atmospheric pressure, and the evolution
of the approximate incident wave is calculated numerically using the higher order spectral (HOS)
method, via the HOS numerical wave tank software package (HOS–NWT; Ducrozet et al., 2012) in a
100 m-long, plate-free flume.
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Figure 3: Horizontal velocity field u(x, z, t) around (a,c,e) thick plate and (b,d,f) thin plate, created
by incident waves with period Tinc = 0.9 s and steepness (a,b) k ainc = 0.06, (c,d) 0.1, and (e,f) 0.15.
Results produced by OpenFOAM post-processing tool ParaView. Movies S3–S4 show corresponding
simulations.

HOS–NWT is run independently from IHFOAM. A discrete Fourier transform is applied to the
HOS–NWT surface elevation time series after the incident waves have propagated 26 m (i.e. at x =
−3 m) to obtain the wave spectrum there. It is calculated over ten wave periods in the steady regime.
The spectrum is used as an input for IHFOAM at x = −3 m, which includes a numerical wave-
maker tool that generates the initial conditions from a list of spectral components. A beach is added
for x < −3 m, so that reflected waves do not contaminate results. Simulations are run on a high
performance computer, using one processor for HOS–NWT and up to 80 processors for IHFOAM on
ΩIHFOAM. The computational time for each simulation is reduced to ≈ 168 h. The results produced
by the modified model were checked against results from the full IHFOAM simulation for the incident
wave with period Tinc = 1 s and steepness k ainc = 0.10.

To compare with the laboratory experimental results presented by Nelli et al. (2017), 15 simulations
are run, for the three incident wave periods Tinc = 0.8 s, 0.9 s and 1 s (with corresponding wavelengths
λ ≡ 2π / k = 1.00 m, 1.26 m and 1.56 m, respectively), and incident amplitudes giving steepness values
k ainc = 0.06, 0.08, 0.10, 0.12 and 0.15. Similarly to the PVC plastic plate used in the laboratory
experiments, the plate thickness is set as h = 0.01 m, and its density as ρp = 570 kg m−3, giving
a draft of 0.0057 m. For comparison to the experimental tests on the plate with an edge barrier,
numerical simulations are also conducted for a plate thick enough that overwash does not occur; the
thickness h = 0.1 m is used, and its density is set as ρp = 57 kg m−3, such that the thin and thick
plates have consistent mass and draft.

Fig. 3 shows typical snapshots of the horizontal velocity around the thick plate (left-hand panels)
and thin plate (right) for incident period Tinc = 0.9 s and steepness k ainc = 0.06 (top panels), 0.10
(middle) and 0.15 (bottom). For the thick plate, as the incident steepness increases, large velocity
regions begin to form beneath the lower surface of the plate and extend away from the rear plate
end, and a small air pocket develops beneath the front plate end. For the thin plate, similar features
develop as the incident steepness increases, but with slightly lower velocities beneath the plate, the
high-velocity region extending farther away from the rear plate end, and the front-end air pocket
slightly larger. Most notably, water is forced onto the upper surface of the plate (overwash). The
overwash is forced alternatively at the front and rear plate ends as the plate pitches, as noted previously
in laboratory experiments. For the snapshots shown, the pitch is in its phase of positive slope, and the
overwash generated at the rear plate end during the negative slope phase is travelling slowly towards
the leading end (i.e. in the negative x-direction). Generally, overwash generated at the leading end is
fast moving and shallow, and collides with slower and deeper overwash generated at the trailing end.
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Figure 4: Model outputs for different cell lengths ∆x, for incident waves with Tinc = 1 s and k ainc =
0.15, and a thin plate. (a) Top panel: Transmitted free surface elevation time series at x = 3 m.
Bottom panels: Non-dimensional transmitted amplitude vs. cell length, where bullets are mean values
and error bars are extrema, with upper panel for Tinc = 1 s and k ainc = 0.15 and lower panel for
Tinc = 0.9 s and k ainc = 0.06. (b) Overwash depth time series at xp = 0.1 m.

Fig. 4 shows model outputs for the thin plate using different cell sizes. The top panel of column (a)
shows time series of the transmitted wave elevation at x = 3 m for the longest and steepest incident
wave, Tinc = 1 s and k ainc = 0.15, calculated using ∆x = 1.5 mm and ∆x = 1 mm. The elevations are
virtually indistinguishable, with a maximum absolute difference of < 2.2 mm. The two panels below
show the non-dimensional transmitted amplitude (steepness), k atra, for five different cell lengths ∆x ∈
[1 mm, 10 mm], and (due to the maximum Courant number) different characteristic time-steps (smaller
time-steps for smaller cell lengths). The incident wave parameters are Tinc = 1 s and k ainc = 0.15
(middle panel) and Tinc = 0.9 s and k ainc = 0.06 (bottom panel). The bullets denote the mean values
and the error bars denote extrema. The results indicate the cell length ∆x = 1.5 mm gives four
significant figure accuracy for k atra. Panel (b) shows time series of the overwash depth 0.1 m along
the plate surface (xp = 0.1 m). Differences between the two cell lengths are more evident, with the
maximum absolute difference > 3.4 mm, and noting that the maximum surface elevation in (a) is
more than three times greater than the maximum overwash depth in (b). This is expected because
the overwash depth is relatively small, and hence more sensitive to small errors. Nevertheless, the
series are similar in terms of period, shape, mean depth, and variability of depths.

3 Comparisons with experimental measurements

3.1 Transmitted field

Validations of the numerical model against experimental data are presented for wave period Tinc =
0.9 s; the agreement shown is consistent with the other periods tested. Due to background noise in
the experimental measurements, following Nelli et al. (2017) the experimental data are filtered to
retain only frequencies f ∈ (0.5 finc, 3.5 finc), and the same filter is applied to the numerical data
for consistency. Unfiltered numerical data are analysed in all other sections. Fig. 5 shows example
transmitted wave surface elevation time series at x = 3 m from numerical simulations and measured
during the corresponding experiments, for (a) the thick plate and (b) the thin plate, with incident
steepness k ainc = 0.12. The numerical and experimental time series are aligned with respect to the
maximum elevations. The mean differences between the corresponding series are 0.83 mm for the thick
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Figure 5: Numerical (blue curves) and experimental (red dotted) transmitted surface elevation time
series, for (a) thick plate and (b) thin plate, with incident period Tinc = 0.9 s and steepness k ainc =
0.12. Linear model predictions are included for reference (black with circles).

plate and 0.81 mm for the thin plate. Predictions given by the linear model of Bennetts et al. (2007)
are superimposed. They are virtually indistinguishable from the numerical and experimental data for
the thick plate, but have higher peaks and lower toughs than the numerical and experimental data
for the thin plate.

Fig. 6 shows the mean non-dimensional transmitted amplitudes, as a function of incident steepness.
Predictions given by the linear model are superimposed for reference. As shown by Nelli et al. (2017),
the linear theory accurately predicts the transmitted amplitudes measured during the experiments
for the thick plate, but increasingly overpredicts the transmitted amplitudes as the incident steepness
increases for the thin plate. For both the thick and thin plates, the transmitted amplitudes given by
the numerical model closely match the amplitudes from the experimental measurements, with mean
differences of 0.003 and 0.002, respectively, and with trends for the numerical model amplitudes to be
slightly smaller than the experimental measurements for the thick plate, and slightly larger for the thin
plate. The error bars indicate twice the standard deviation in the set of ten amplitudes recorded per
test. They are < 0.003, indicating only very weak temporal variability in the transmitted amplitudes.

3.2 Overwash

Fig. 7 shows example overwash depth time series close to the front (xp = 0.1 m) and rear (xp = 0.9 m)
ends of the thin plate, for the incident steepness k ainc = 0.12. The amplitude and period given by the
numerical model closely match the experimental measurements. Notwithstanding the small discrep-
ancies in the series, particularly at the plate rear, the numerical–experimental agreement is pleasing;
it is unsurprising that the agreement for the overwash depth is not as good as the corresponding
transmitted surface elevation (Fig. 5b), as the overwash is not a perturbation from the incident wave,
and relative measurement errors are greater for the overwash in both the model and experiments.

Fig. 8 shows the mean overwash depth, 〈how〉, as a function of incident steepness, where the mean
is with respect to time (over a wave period), and averaged over ten periods. At the front end of
the plate, the depths given by the numerical model closely match the experimental measurements
(differences < 0.57 mm), replicating the increase of overwash depth with increasing incident steepness
up to k ainc = 0.1, and insensitivity of the depth to incident steepness for k ainc ≥ 0.1. At the rear end,
the numerical–experimental agreement is also good (differences < 0.51 mm), except for k ainc = 0.1,
where the depth measured during the experiments is inconsistent with the otherwise increasing trend
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Figure 6: Non-dimensional transmitted amplitudes vs. incident steepness, for (a) thick plate and
(b) thin plate, with incident period Tinc = 0.9 s, from numerical data (blue) and experimental data
(red). Mean values (symbols) and twice the standard deviations (error bars) are shown. Horizontal
offsets ±0.002 are included for clarity. Linear model predictions are overlaid (black dashed curves).
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Figure 7: Numerical (blue curves) and experimental (red with dots) overwash depth time series at
(a) front end and (b) rear end of the thin plate, with Tinc = 0.9 s and k ainc = 0.12.
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Figure 8: Overwash depth vs. incident steepness at (a) front end and (b) rear end of thin plate, with
Tinc = 0.9 s, including predictions from theoretical model of Skene et al. (2015). Mean values (symbols)
and two-times the standard deviations (error bars) are shown. Horizontal offsets ±0.002 are included
for clarity.

of the overwash depth with increasing incident steepness. The anomaly is likely due to sampling error
during the experimental test, which is evident in the time series (not shown), and also for k ainc = 0.08,
resulting in the large standard deviation (error bars). The error bars are < 0.25 mm (except for the
two anomolous experimental data points), indicating only a small amount of temporal variability in
the overwash depth. Predictions from the theoretical model of Skene et al. (2015) are superimposed.
The theory is only accurate (to within 0.5 mm) for k ainc ≤ 0.08 at the plate front and for k ainc = 0.06
at the plate rear. At the plate front, the theoretical predictions increasingly overpredict mean depths
as the incident steepness increases, and at the plate rear the predictions are ≈ 2–4 mm greater than
the numerical and experimental mean values for k ainc ≥ 0.08. The findings are broadly similar to
those made by Skene et al. (2015) from theoretical–experimental comparisons.

4 Analysis of numerical simulations

4.1 Plate hydrodynamics

Fig. 9 shows RAOs (9) for (a) heave Ahv and (b) pitch Apt, as functions of incident steepness, for tests
with incident period Tinc = 0.9 s, and both thin and thick plates. The heave RAOs tend to decrease
with increasing incident steepness for both plates. The decrease is far more pronounced for the thin
plate; for example, the decrease from k ainc = 0.06 to 0.15 is almost 2.5 times greater for the thin
plate than the thick plate. The pitch RAOs also tend to decrease with increasing steepness, and the
decreases from the smallest to largest steepness is 2.7 times greater for heave than for pitch. However,
the decreases for pitch are far milder than for heave.

Fig. 10(a) shows the time-averaged (over 10 wave periods) mean pitch angle 〈θ〉 as a function of
incident steepness, again for tests with incident period Tinc = 0.9 s, and both thin and thick plates.
Similar to earlier results, error bars showing twice the standard deviation are included. For the thick
plate, the pitch angle is approximately zero, 〈θ〉 < 0.002 rads ≈ 0.1◦, for all incident steepness values
tested. In contrast, for the thin plate the pitch angle is only < 0.002 rads for the smallest steepness,
k ainc = 0.06. It jumps to 〈θ〉 = 0.012 rads for the next largest steepness, k ainc = 0.08, and then
weakly increases with increasing steepness, reaching 〈θ〉 = 0.018 rads ≈ 1◦ at the largest steepness,
k ainc = 0.15. These are significant proportions of the pitch motion, as the maximum pitch angle is
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Figure 9: Response amplitude operators vs. incident steepness, where Tinc = 0.9 s, for (a) heave and
(b) pitch, comparing thin plate (green diamonds) and thick plate (purple squares).
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Figure 10: (a) Mean pitch angle vs. incident steepness, comparing thin plate (green diamonds and
stems) and thick plate (purple squares and stems), where symbols denote mean values and stems
denote twice the standard deviation. (b) Mean overwash depth vs. incident steepness for the thin
plate. Results are for incident wave period Tinc = 0.9 s.
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Figure 11: Snapshots of vorticity field, $(x, z, t), around (a,c) thick plate, and (b,d) thin plate, for
incident steepness (a,b) k ainc = 0.06 and (c,d) 0.15. Results produced by ParaView. Movie S5 shows
corresponding simulations.

3.38◦ for k ainc = 0.08, and 5.72◦ for k ainc = 0.15.
Fig. 10(b) shows the corresponding mean overwash depth, 〈〈how〉〉, as a function of incident steep-

ness for thin plate, where the mean is with respect to both time and space (over the plate surface,
0 < xp < 1). The behaviour of the overwash depth as a function of steepness closely matches the
mean angle for the thin plate shown in Fig. 10(a): it jumps from how ≈ 0 for the smallest steepness
to how = 3.33 mm for the next smallest steepness, and then tends to increase weakly with increasing
incident steepness, reaching 5.14 mm at the largest steepness. This indicates the presence of overwash
on the thin plate is responsible for the non-zero pitch angle, with deeper overwash at the plate rear
(Fig. 8) resulting in the positive value of the mean angle.

4.2 Energy dissipation

Fig. 11 shows snapshots of the vorticity field

$(x, z, t) =
∂w

∂x
− ∂u

∂z
, (10)

around the thick plate and thin plate, for incident wave period Tinc = 0.9 s, and steepness k ainc =
0.06 (top panels) and 0.15 (bottom). For the smallest incident steepness, the vorticity is generally
weak, |$| < 5 Hz, with only a few small, isolated vortices shedding from the submerged plate ends
(|$| ≈ 20 Hz), which are most prominent at the rear ends and for the thin plate, where small pockets
of air entrainment occur (Movie S5). For the larger incident steepness, a large-vorticity layer exists
beneath the submerged portion of the thick plate; the voticity beneath the plate is generated by the
front plate end (and to a lesser extent the rear end) moving in and out of the water, and the vorticity
propagating along the underside of the plate, together with air pockets (Movie S5). The vorticity
regions generated at the plate ends also propagates away from the plate to create a thin layer of high
vorticity along the free surface, which is stronger in the transmitted region (|$| ≈ 20 Hz extending for
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Figure 12: Schematic (not to scale) indicating the domain decomposition used for energy loss calcu-
lations.

≈ 0.25 m in the snapshot shown, but farther in general). The vorticity layer on the left-hand side of
the plate is associated with high-order reflected waves generated by the front plate end. For the thin
plate, large vorticity values occur throughout the overwash. The overwash exacerbates the complex
plate-end phenomena, particularly at the rear end, resulting in large vortices that are shed away from
the plate along the free surface and relatively deep into the water.

Large vorticity regions indicate significant wave-energy dissipation. Functions Dow(xp) and Dwt(x)
are introduced to investigate the vertical branches where energy is dissipated in the overwash region
and surrounding water, respectively (see Fig. 12). They are calculated by (i) vertically integrating the
dissipation rate

Φ(x, z, t) = 2µ e2xz, where exz(x, z, t) =
1

2

(
∂u

∂z
+
∂w

∂x

)
(11)

is the off-diagonal component of the deviatoric strain tensor (Batchelor, 2000, Eqn. 3.4.5), (ii) tempo-
rally integrating over a wave period, (iii) averaging over ten wave periods, and (iv) normalising with
respect to the incident-wave energy, Einc, calculated from simulations without a plate (see below).
Mathematically, they are defined via

D•(x) =
1

10Einc

∫ 10Tinc

0

∫ zb(•)

za(•)
Φ(x, z, t) dz dt, (12)

where za and zb are the upper and lower bounds of the vertical integration. For Dow, the vertical
integration extends from the upper plate surface to the free surface, η (purple interval in Fig. 12).
For Dwt, the vertical integration extends from the floor, z = −Hw, to either the free surface or, if
present, the plate surface (navy and brown intervals in Fig. 12, respectively). The quantities D• have
dimension of inverse length, as they do not include horizontal integration, which would introduce
unnecessary complexities due to the deforming mesh sizes around the plate. Ad hoc post-processing
is used to calculate the energy-dissipation branches, D•, in which the gradients involved in the strain
tensor (11) are approximated using finite differences, as

∂u

∂z
≈ u(x, z + ∆z)− u(x, z)

∆z
and

∂w

∂x
≈ w(x+ ∆x, z)− w(x, z)

∆x
. (13)

The vertical averaging process misses a small portion of the surrounding water region, as shown in
Fig. 12, although tests (not shown) indicate the missed region only contains a small proportion of the
overall energy dissipation.

Fig. 13 shows Dwt(x) for the thick and thin plates, and Dow(xp) for the thin plate only. Results
are presented for the tests shown in Fig. 11(c,d), where Tinc = 0.9 s and k ainc = 0.15, i.e. the tests
with the greatest energy dissipation. In the surrounding water, energy dissipation spikes at the ends
of the plates, x = 0 and l, with the peak dissipation occurring at the rear plate ends. The dissipation
is generally larger for the thin plate than the thick plate, particularly at the rear end, where the thin-
plate peak is 2.3 times larger than the thick-plate peak, and large dissipation that extends beyond the
plate end, e.g. Dwt > 0.1 m−1 up to 0.1 m beyond the thin plate rear end. In the overwash, dissipation
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Figure 13: Vertically integrated dissipation rate in surrounding water for the (a) thick plate and
(b) thin plate, and (c) in the overwash for the thin plate for incident period Tinc = 0.9 s and steepness
k ainc = 0.15, corresponding to Fig. 11(c,d).

generally increases with distance along the plate, and the values are comparable to those beneath the
plate. The pronounced peak in the overwash dissipation just after halfway along the plate is caused
by bore collisions at that location, but the peak dissipation in the overwash is less than one-fifth of
the peak dissipation in the surrounding water.

Assuming the water far from the plate is irrotational (motivated by its wave-like behaviour there),
the unsteady Bernoulli principle applies, and the total energy per unit volume, E(x, t), is given by

E =
ρw2

2
+ ρ g (z − η) + P. (14)

Thus, the proportions of incident energy reflected and transmitted are, respectively,

ER =

[
E − Einc

Einc

]
x�0

and ET =

[
E

Einc

]
x�l

, (15)

where the incident energy, Einc, is evaluated using data from simulations without a plate. A reflection
coefficient, R, is obtained by integrating ER over the domain {x : 0 < x+2 m < λ;−Hw < z < η}, and
over a wave period, and averaging over ten wave periods. A transmission coefficient, T , is similarlty
obtained from ET, and using the domain {x : 0 < x− 3 m < λ;−Hw < z < η}.

Fig. 14 shows the energy coefficient E = R+ T as a function of incident steepness for Tinc = 0.9 s,
and the (a) thick plate and (b) thin plate. The maximum value of the energy coefficient is unity,
i.e. E = R + T ≤ 1, where equality indicates that all of the incident energy is redistributed into
reflected or transmitted fields, and values less than unity indicate that incident energy is dissipated.
For both plates, an increasing proportion of energy is dissipated as the incident steepness increases.
For the thick plate, only small proportions of energy are dissipated—the minimum energy coefficient
is R + T = 0.956 at k ainc = 0.15, i.e. < 5% incident energy dissipated only. In contrast, for the
thin plate, relatively large proportions of energy are dissipated: R + T = 0.912 at k ainc = 0.08, and
R+ T = 0.790 at k ainc = 0.15, i.e. > 20% incident energy dissipated. The behaviours are consistent
with the laboratory experimental findings of Toffoli et al. (2015) and Nelli et al. (2017), who used
alternative methods to evaluate the reflected and transmitted energies.

Fig. 14 also shows energy coefficients E = R + T + D, where D is the proportion of dissipated
energy, calculated as

D =

∫ xbh

xwm

Dwt dx for the thick plate, (16a)

and D =

∫ xbh

xwm

Dwt dx+Dow for the thin plate, (16b)
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Figure 14: Energy coefficient E in the reflected and transmitted fields (R + T ; navy pentagrams),
plus the energy dissipated in the overwash (R + T + Dow; cyan crosses; b only), plus the energy in
the surrounding water (R + T + D; orange hexagrams), vs. incident steepness for Tinc = 0.9 s, and
(a) thick plate and (b) thin plate.

where

Dow =

∫ l

0
Dow dxp (17)

is the proportion of incident energy dissipated in the overwash. For both plates, adding the proportion
of dissipated energy to the energy coefficient brings it close to unity: for the thick plate, 1 − (R +
T + D) < 0.01 for k ainc ≤ 0.12 and 1 − (R + T + D) < 0.02 for k ainc = 0.15; for the thin plate,
1− (R+ T +D) < 0.034 for k ainc ≤ 0.12, and 1− (R+ T +D) < 0.044 for k ainc = 0.15. Therefore,
the results indicate the energy-dissipation calculation, based on dissipation rate (11), accounts for
the majority of the incident energy not in the reflected and transmitted fields. It is likely that
the approximation of the derivatives in the post-processing, which was necessary to evaluate the
dissipation rate, is responsible for at least part of the remaining missing energy, and that surface
tension effects and vortices in the air account for other missing energy. The thin-plate results (Fig. 14b)
also include the energy coefficient with only the proportion of energy dissipated in the overwash added,
E = R + T + Dow. Dissipation in the overwash contributes 30–35% of the total dissipation, D, i.e.
Dow /D = 0.30–0.35, indicating that dissipation in the surrounding water is the dominant contributor
to total dissipation.

Fig. 15 shows energy coefficients as functions of incident steepness for the thin plate, as in
Fig. 14(b), but for incident wave period (a) Tinc = 0.8 s and (b) Tinc = 1 s. For the shorter inci-
dent period, dissipation is greater than for Tinc = 0.9 s, e.g. R+ T = 0.775 at k ainc = 0.15, meaning
> 30% incident energy dissipated, compared to 21% for Tinc = 0.9 s at k ainc = 0.15. Moreover, dissi-
pation in the overwash is the dominant contributor to the total dissipation, with Dow /D = 0.57–0.95
for k ainc ≥ 0.08 (dissipation is negligible for k ainc = 0.06). For the longer period, dissipation is
marginally weaker than for Tinc = 0.9 s, with < 16% incident energy dissipated at k ainc = 0.15, and
the contribution of overwash dissipation to total dissipation is comparable to Tinc = 0.9 s, although
less consistent.
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Figure 15: As in Fig. 14b, but for (a) Tinc = 0.8 s and (b) Tinc = 1 s.

5 Summary and discussion

A numerical model of regular incident waves interacting with a thin floating plate, based on the two-
phase, incompressible Navier–Stokes equations, was used to study the influence of overwash on wave
transmission, particularly due to wave-energy dissipation. The governing equations were solved using
software that implements the volume-of-fluid method, along with a dynamically coupled deforming
mesh solver for the plate motion. Run-times were accelerated by using a nonlinear potential-flow
model to simulate evolution of the incident field up to approximately two to three wavelengths from
the plate. A series of simulations were performed for a set of three incident periods, with corresponding
wavelengths comparable to the plate length, and five incident steepness values, ranging from mild to
storm-like. Model outputs were compared to laboratory experimental measurements on a floating
plastic plate, and simulations were also run for a thick plate with identical mass to compare with
experimental tests where an edge barrier was used to prevent overwash. The numerical model was
shown to give excellent agreement with the experimental measurements in terms of the transmitted
wave field, for both the thick and thin plates, including the increasing deviation of the amplitude
transmitted by the thin plate from linear theory with increasing incident steepness. Good numerical–
experimental agreement was found for overwash depths on the thin plate.

Numerical data were analysed to gain insights into the effects of overwash that were not measured
during the experiments. Heave and pitch RAOs were found to decrease with increasing incident
steepness, with the decrease far stronger for the thin plate than the thick plate, and the mean pitch
angle was shown to be non-zero in the presence of overwash. Wave-energy dissipation around the
plates was approximated numerically, motivated by large vorticity regions around the thin plate and
in the overwash for large incident steepness. It was found that dissipation in the overwash increases
with distance along the thin plate, with a pronounced peak near the plate centre, due to bore collisions.
In the surrounding water, for both plates, dissipation was found to spike at the plate ends, particularly
at the rear end, and with greater dissipation for the thin plate. The total dissipation was shown to
compensate for most of the incident energy not in the reflected and transmitted fields. For the thin
plate, dissipation in the overwash was found to be the dominant contributor to total dissipation for
the shortest incident wave tested, whereas dissipation in the surrounding water dominates for the two
longer incident waves.

The findings have potential implications for predicting propagation of ocean surface-gravity waves
through the sea-ice-covered ocean, in operational forecasting (Boutin et al., 2019) and climate-related
studies (Bennetts et al., 2017; Roach et al., 2018). Contemporary wave-in-ice models (Williams et al.,
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2013a,b) use thin floating plates to model ice floes, and assume linearity. Three-dimensional models
have been developed (Montiel et al., 2016; Meylan & Bennetts, 2018), but two-dimensional models
are still used as standard, where propagation through multiple plates can be determined from the
transmission coefficient for a solitary plate (Bennetts & Squire, 2012). Using a Froude scaling, the
simulations in this investigation can be applied at geometric scale factors O(10)–O(100), so that wave-
lengths and floe lengths are tens to hundreds of metres, and floe thicknesses are decimetres to metres.
The laboratory–field scale disparity in the Reynolds number may alter the findings, particularly in
relation to dominant sources of energy dissipation found in the shallow-water flow on the upper plate
surface and at the plate ends, and larger-scale tests are required to investigate the effects.
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