Publications

Submitted/accepted

Alberello, Bennetts, Onorato, Vichi, MacHutchon, Eayrs, Ntamba Ntamba, Benetazzo, Bergamasco, Nelli, Pattani, Clarke, Tersigni, Toffoli, Three-dimensional imaging of wave evolution in the marginal ice zone during an explosive cyclone, submitted. arXiv:2103.08864

H. Chen, Q. Xu, X. Zheng, L. Bennetts, H. Xie, B. Xie, Z. Lin, Z. Liu, Y. Li, Viscous effects on the added mass and damping forces during free heave decay of a floating cylinder with a hemispherical bottom, submitted.

Published journal articles

[67] M. Meylan, M. Ilyas, B. Lamichhane, L. Bennetts, 2021, Swell induced vibrations of a thickening ice shelf over a shoaling seabed, Proceedings of the Royal Society of London A, 477: 20210173, doi.org/10.1098/rspa.2021.0173, arXiv:2103.05192

[66] A. Alberello, F. Nelli, A. Dolatshah, L. Bennetts, M. Onorato, A. Toffoli, A physical model for wave attenuation in pancake ice, 2021, International Journal of Offshore & Polar Engineering, International Journal of Offshore and Polar Engineering, 31(3), 263–269, doi.org/10.17736/ijope.2021.ik08

[65] L. Bennetts, M. Meylan, 2021, Complex resonant ice shelf vibrations, SIAM Journal on Applied Mathematics, 81(4), 1483–1502, doi.org/10.1137/20M13851

[64] D. Skene, L. Bennetts, A transition loss theory for waves reflected and transmitted by an overwashed body, 2021, SIAM Journal on Applied Mathematics, 81(3), 834–852, doi.org/10.1137/20M1386979

[63] B. Kalyanaraman, M. Meylan, L. Bennetts, B. Lamichhane, 2021, iceFEM: A FreeFem package for wave induced ice-shelf vibrations, Journal of Open Science Software, 6(59), 2939, doi.org/10.21105/joss.02939

[62] M. Derkani, A. Alberello, F. Nelli, L. Bennetts, K. Hessner, K. MacHutchon, K. Reichert, L. Aouf, S. Khan, A. Toffoli, 2021, Wind, waves, and surface currents in the Southern Ocean: Observations from the Antarctic Circumnavigation Expedition, Earth System Data Science, 13, 1189–1209, doi.org/10.5194/essd-13-1189-2021

[61] M. Meylan, C. Horvat, C. Bitz, L. Bennetts, 2021, A floe size dependent scattering model in two- and three-dimensions for wave attenuation by ice floes, Ocean Modeling, 101779, doi.org/10.1016/j.ocemod.2021.101779

[60] K. Golden, L. Bennetts, E. Cherkaev, I. Eisenman, D. Feltham, C. Horvat, E. Hunke, C. Jones, D. Perovich, P. Ponte-Castaneda, C. Strong, D. Sulsky, A. Wells, 2020, Modeling sea ice, Notices of the American Mathematical Society, 67(10), 1535–1555

[59] B. Kalyanaraman, M. Meylan, L. Bennetts, B. Lamichhane, 2020, A coupled fluid–elasticity model for wave forcing of an ice-shelf, Journal of Fluids and Structures, 97, 103074, doi.org/10.1016/j.jfluidstructs.2020.103074

[58] A. Archer, H. Wolgamot, J. Orszaghova, L. Bennetts, M. Peter, R. Craster, 2020, Experimental realisation of broadband control of water wave energy amplification in chirped arrays, Physical Review Fluids, 5, 062801(R), doi.org/10.1103/PhysRevFluids.5.062801, arXiv.1910.13103

[57] A. Alberello, L. Bennetts, P. Heil, C. Eayrs, M. Vichi, K. MacHutchon, M. Onorato, A. Toffoli, 2020,  Drift of pancake ice floes in the Antarctic marginal ice zone during polar cyclones, Journal of Geophysical Research, doi.org/10.1029/2019JC015418, arXiv.1906.10839

[56] F. Nelli, L. Bennetts, D. Skene, A. Toffoli, 2020, Water wave transmission and energy dissipation by a floating plate in the presence of overwash, Journal of Fluid Mechanics, 889, doi.org/10.1017/jfm.2020.75

[55] L. Bennetts, M. Peter, R. Craster, 2019, Low-frequency wave-energy amplification in graded two-dimensional resonator arrays, Philosophical Transactions of the Royal Society A, 377(2156), doi.org/10.1098/rsta.2019.0104

[54] M. Quigley, L. Bennetts, P. Durance, P. Kuhnert, M. Lindsay, K. Pembleton, M. Roberts, C. White, 2019, The provision and utility of earth science to decision-makers: Synthesis and key findings, Environment Systems and Decisions, doi.org/10.1007/s10669-019-09737-z

[53] L. Bennetts, M. Peter, P. Dylejko, A. Skvortsov, 2019, Effective properties of acoustic metamaterial chains with low-frequency bandgaps controlled by the geometry of lightweight attachment, Journal of Sound and Vibration, 456, 1–12, doi.org/10.1016/j.jsv.2019.05.022

[52] M. Vichi, C. Eayrs, A. Alberello, A. Bekker, L. Bennetts, D. Holland, E. De Jong, W. Joubert, K. MacHutchon, G. Messori, J. Mojica, M. Onorato, C. Saunders, S. Skatulla, A. Toffoli, 2019, Effects of an explosive polar cyclone crossing the Antarctic marginal ice zone, Geophysical Research Letters, 46(11), 5948–5958, doi.org/10.1029/2019GL082457

[51] B. Kalyanaraman, L. Bennetts, B. Lamichhane, M. Meylan, 2019, On the shallow water limit for modelling ocean-wave induced ice-shelf vibrations, Wave Motion, 90, 1–16, doi.org/10.1016/j.wavemoti.2019.04.004

[50] M. Quigley, L. Bennetts, P. Durance, P. Kuhnert, M. Lindsay, K. Pembleton, M. Roberts, C. White, 2019, The provision and utility of earth science to decision-makers: Case studies, Environment Systems and Decisions, doi.org/10.1007/s10669-019-09728-0

[49] A. Alberello, M. Onorato, L. Bennetts, M. Vichi, C. Eayrs, K. MacHutchon, A. Toffoli, 2019, Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone, The Cryosphere, 13, 41–48, doi.org/10.5194/tc-13-41-2019

[48] S. Rupprecht, L. Bennetts, M. Peter, 2019, On the calculation of wave attenuation along rough strings using individual and effective fields, Wave Motion, 85, 57–66, doi.org/10.1016/j.wavemoti.2018.10.007

[47] A. Dolatshah, F. Nelli, L. Bennetts, M. Meylan, A. Alberello, J. Monty, A. Toffoli, 2018, Hydroelastic interactions between water waves and floating freshwater ice, Physics of Fluids, 30, 091702, https://doi.org/10.1063/1.5050262, arXiv:1807.10999

[46] L. Bennetts, M. Peter, R. Craster, 2018, Graded resonator arrays for spatial frequency separation and amplification of water waves, Journal of Fluid Mechanics, 854, R4, doi:10.1017/jfm.2018.648, arXiv:1806.05404

[45] M. Meylan, L. Bennetts, 2018, Three-dimensional time-dependent scattering of waves in the marginal ice zone, Philosophical Transactions of the Royal Society, 376:20170334. http://dx.doi.org/10.1098/rsta.2017.0334

[44] R. Massom, T. Scambos, L. Bennetts, P. Reid, V. Squire, S. Stammerjohn, 2018, Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell, Nature, 558, 383–389, https://doi.org/10.1038/s41586-018-0212-1

[43] M. Ilyas, M. Meylan, B. Lamichhane, L. Bennetts, 2018, Time-domain and modal response of ice shelves to wave forcing using the finite element method, Journal of Fluids and Structures, 80, 113–131, doi.org/10.1016/j.jfluidstructs.2018.03.010

[42] M. Meylan, L. Bennetts, J. Mosig, E. Rogers, M. Doble, M. Peter, 2018, Dispersion relations, power laws and energy loss for waves in the marginal ice zone, Journal of Geophysical Research, 123(5), 3322–3335, doi.org/10.1002/2018JC013776

[41] D. Skene, L. Bennetts, M. Wright, M. Meylan, K. Maki, 2018, Water wave over wash of a step, Journal of Fluid Mechanics, 839, 293–312, doi.org/10.1017/jfm.2017.857

[40] L. Yiew, L. Bennetts, M. Meylan, G. Thomas, B. French, 2017, Wave-induced collisions of thin floating disks, Physics of Fluids, 29, 127102, doi:10.1063/1.5003310

[39] M. Meylan, L. Bennetts, R. Hosking, E. Catt, On the calculation of normal modes of a coupled ice-shelf/sub-ice-shelf cavity system, 2017, Journal of Glaciology, 63(240), 751–754, doi.org/10.1017/jog.2017.27

[38] L. Bennetts, S. O’Farrell, P. Uotila, 2017, Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a standalone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, doi:10.5194/tc-11-1035-2017

[37] L. Bennetts, M. Peter, F. Montiel, 2017, Localisation of Rayleigh—Bloch waves and damping of resonant loads on arrays of cylinders, Journal of Fluid Mechanics, 813, 508–527, doi.org/10.1017/jfm.2016.855

[36] F. Nelli, L. Bennetts, D. Skene, J. Monty, J. Lee, M. Meylan, A. Toffoli, 2017, Reflection and transmission of regular water waves by a thin floating plate, Wave Motion, 70, 209–221, doi.org/10.1016/j.wavemoti.2016.09.003

[35] S. Rupprecht, L. Bennetts, M. Peter, 2017, Effective wave-propagation along a rough thin-elastic beam, Wave Motion, 70, 3–14, doi.org/10.1016/j.wavemoti.2016.08.002

[34] M. Meylan, L. Bennetts, M. Peter, 2017, Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions, Wave Motion, 70, 240–250, doi.org/10.1016/j.wavemoti.2016.06.014

[33] F. Montiel, V. Squire, L. Bennetts, 2016, Attenuation and directional spreading of ocean wave spectra in the marginal ice zone, Journal of Fluid Mechanics, 790, 492-522, doi.org/10.1017/jfm.2016.21

[32] L. Yiew, L. Bennetts, M. Meylan, B. French, G. Thomas, 2016, Hydrodynamic response of a thin floating disk to regular waves, Ocean Modelling, 97, 52-64, doi.org/10.1016/j.ocemod.2015.11.008

[31] A. Toffoli, L. Bennetts, M. Meylan, C. Cavaliere, A. Alberello, J. Elsnab, J. Monty, 2015, Sea ice floes dissipate the energy of steep ocean waves, Geophysical Research Letters, 42(20), 8547-8554, doi.org/10.1002/2015GL065937

[30] D. Skene, L. Bennetts, M. Meylan, A. Toffoli, 2015, Modelling water wave overwash of a thin floating plate, Journal of Fluid Mechanics, 777, R3, doi.org/10.1017/jfm.2015.378 

[29] L. Bennetts, A. Alberello, M. Meylan, C. Cavaliere, A. Babanin, A. Toffoli, 2015, An idealised experimental model of ocean surface wave transmission by an ice floe, Ocean Modelling, 96(1), 85-92, doi.org/10.1016/j.ocemod.2015.03.001

[28] F. Montiel, V. Squire, L. Bennetts, 2015, Reflection and transmission of ocean wave spectra by a band of randomly distributed ice floes, Annals of Glaciology, 56(69), 315-322, doi.org/10.3189/2015AoG69A556

[27] M. Meylan, L. Bennetts, A. Alberello, C. Cavaliere, A. Toffoli, 2015, Experimental and theoretical models of wave-induced flexure of a sea ice floe, Physics of Fluids, 27, 041704, doi.org/10.1063/1.4916573

[26] F. Montiel, V. Squire, L. Bennetts, 2015, Evolution of directional wave spectra through finite regular and randomly-perturbed arrays of scatterers, SIAM Journal on Applied Mathematics, 75(2), 630-651, doi.org/10.1137/140973906

[25] L. Bennetts, S. O’Farrell, P. Uotila, V. Squire, 2015, An idealised wave-ice interaction model without subgrid spatial or temporal discretisations, Annals of Glaciology, 56(69), 258-262, doi.org/10.3189/2015AoG69A599

[24] L. Bennetts, T. Williams, 2015, Water wave transmission by an array of floating disks, Proceedings of the Royal Society of London A, 471(2173), doi.org/10.1098/rspa.2014.0698

[23] L. Bennetts, M. Peter, H. Chung, 2015, Absence of localisation in ocean wave interactions with a rough seabed in intermediate water depth, Quarterly Journal of Mechanics and Applied Mathematics, 68(1), 97-113, doi.org/10.1093/qjmam/hbu024 

[22] M. Meylan, L. Yiew, L. Bennetts, B. French, G. Thomas, 2015, Surge motion of an ice floe in waves: comparison of theoretical and experimental models, Annals of Glaciology, 56(69), 107-111, doi.org/10.3189/2015AoG69A646

[21] M. Meylan, L. Bennetts, A. Kohout, 2014, In-situ measurements and analysis of ocean waves in the Antarctic marginal ice zone, Geophysical Research Letters, 41(14), 5046–5051, doi.org/10.1002/2014GL060809

[20] T. Williams, L. Bennetts, V. Squire, D. Dumont, L. Bertino, 2013, Wave-ice interactions in the marginal ice zone. Part 1: Theoretical foundations, Ocean Modelling, 71, 81-91, doi.org/10.1016/j.ocemod.2013.05.010

[19] T. Williams, L. Bennetts, V. Squire, D. Dumont, L. Bertino, 2013, Wave-ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface, Ocean Modelling, 71, 92-101, doi.org/10.1016/j.ocemod.2013.05.011

[18] L. Bennetts, M. Peter, 2013,  Spectral analysis of wave propagation through rows of scatterers via random sampling and a coherent potential approximation, SIAM Journal on Applied Mathematics, 73(4), 1613-1633, doi.org/10.1137/120903439

[17] F. Montiel, F. Bonnefoy, P. Ferrant, L. Bennetts, V. Squire, P Marsault, 2013, Hydroelastic response of floating elastic disks to regular waves. Part 1: Wave tank experiments, Journal of Fluid Mechanics, 723, 604-628, doi.org/10.1017/jfm.2013.123

[16] F. Montiel, L. Bennetts, V. Squire, F. Bonnefoy, P. Ferrant, 2013, Hydroelastic response of floating elastic disks to regular waves. Part 2: Modal analysis, Journal of Fluid Mechanics, 723, 629-652, doi.org/10.1017/jfm.2013.124

[15] V. Squire, T. Williams, L. Bennetts, 2013, Better operational forecasting for the contemporary Arctic via ocean wave integration, International Journal of Offshore & Polar Engineering, 23(2), 81-88, ISSN 1053-5381

[14] L. Bennetts, V. Squire, 2012, Model sensitivity analysis of scattering-induced attenuation of ice-coupled waves, Ocean Modelling, 45-46, 1-13, doi.org/10.1016/j.ocemod.2012.01.002

[13] F. Montiel, L. Bennetts, V. Squire, 2012, The transient response of floating elastic plates to wavemaker forcing in two dimensions, Journal of Fluids and Structures, 28, 416-433, doi.org/10.1016/j.jfluidstructs.2011.10.007

[12] L. Bennetts, V. Squire, 2012, On the calculation of an attenuation coefficient for transects of ice covered ocean, Proceedings of the Royal Society of London A, 468, 136-162, doi.org/10.1098/rspa.2011.0155

[11] L. Bennetts, 2011, Wave attenuation through multiple rows of scatterers with differing periodicities, SIAM Journal on Applied Mathematics, 71(2), 540-548, DOI:10.1137/10080662X

[10] L. Bennetts, T. Williams, 2010, Wave scattering by ice floes and polynyas of arbitrary shape, Journal of Fluid Mechanics, 662, 5–35, doi.org/10.1017/S0022112010004039

[9] L. Bennetts, M. Peter, V. Squire, M. Meylan, 2010 A three-dimensional model of wave attenuation in the marginal ice zone, Journal of Geophysical Research Oceans, 115, C12043, doi.org/10.1029/2009JC005982

[8] L. Bennetts, V. Squire, 2010, Linear wave forcing of an array of axisymmetric ice floes, IMA Journal of Applied Mathematics, 75(1), 108–138, doi.org/10.1093/imamat/hxp038

[7] V. Squire, G. Vaughan, L. Bennetts, 2009, Ocean surface wave evolvement in the Arctic Basin, Geophysical Research Letters, 36, L22502, DOI: 10.1029/2009GL040676

[6] L. Bennetts, V. Squire, 2009, Wave scattering by multiple rows of circular ice floes, Journal of Fluid Mechanics, 639, 213–238, DOI:http://dx.doi.org/10.1017/S0022112009991017

[5] G. Vaughan, L. Bennetts, V. Squire, 2009, The decay of flexural-gravity waves in long sea-ice transects, Proceedings of the Royal Society of London A, 465, 2785–2812, DOI: 10.1098/rspa.2009.0187

[4] L. Bennetts, N. Biggs, D. Porter, 2009, The interaction of flexural-gravity waves with periodic geometries, Wave Motion, 46(1), 57–73, doi:10.1016/j.wavemoti.2008.08.002

[3] L. Bennetts, N. Biggs, D. Porter, 2009, Wave scattering by an axisymmetric ice floe of varying thickness, IMA Journal of Applied Mathematics, 74, 273–295, doi:10.1093/imamat/hxn019

[2] L. Bennetts, V. Squire, 2008, Wave scattering by an infinite straight-line array of axisymmetric ice floes, International Journal of Offshore and Polar Engineering, 18(4), 254–262, ISSN 1053-5381

[1] L.Bennetts, N. Biggs, D. Porter, 2007, A multi-mode approximation to wave scattering by ice sheets of varying thickness, Journal of Fluid Mechanics, 579, 413–443, doi.org/10.1017/S002211200700537X

My PhD thesis

Wave scattering by ice sheets of varying thickness, Awarded in 2007 by the University of Reading UK.